
Dynamic XML Documents
with Distribution and Replication �

Serge Abiteboul Angela Bonifati Grégory Cobéna Ioana Manolescu Tova Milo
�

INRIA Futurs
FirstName.LastName@inria.fr

ABSTRACT
The advent of XML as a universal exchange format, and of Web
services as a basis for distributed computing, has fostered the ap-
parition of a new class of documents: dynamic XML documents.
These are XML documents where some data is given explicitly
while other parts are given only intensionally by means of embed-
ded calls to web services that can be called to generate the required
information. By the sole presence of Web services, dynamic docu-
ments already include inherently some form of distributed compu-
tation. A higher level of distribution that also allows (fragments of)
dynamic documents to be distributed and/or replicated over several
sites is highly desirable in today’s Web architecture, and in fact is
also relevant for regular (non dynamic) documents.

The goal of this paper is to study new issues raised by the distri-
bution and replication of dynamic XML data. Our study has orig-
inated in the context of the Active XML system [1, 3, 22] but the
results are applicable to many other systems supporting dynamic
XML data. Starting from a data model and a query language, we
describe a complete framework for distributed and replicated dy-
namic XML documents. We provide a comprehensive cost model
for query evaluation and show how it applies to user queries and
service calls. Finally, we describe an algorithm that, for a given
peer, chooses data and services that the peer should replicate to im-
prove the efficiency of maintaining and querying its dynamic data.

1. INTRODUCTION
XML has become a standard format for data exchange and new

standards have emerged for querying XML data, such as XPath [31]
and XQuery [31]. In the spirit of including code in HTML docu-
ments (e.g. Sun JSP [15], PHP [27]), one is led naturally to the idea
of embedding active fragments in XML documents. Indeed the idea
of interpreting or running XML documents is already promoted by
technologies such as Macromedia MX or Apache Jelly.

This work was developed in the context of the Active XML sys-

�This project is partially supported by EU IST project DBGlobe
(IST 2001-32645)
�On sabbatical from Tel-Aviv University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-670-6/03/06 ...$5.00.

tem and language [1, 3, 22]. The system is centered around Ac-
tive XML documents, whose content is partially materialized in
the document, whereas other parts are generated by calls to Web
services (typically performing queries or updates). In the present
paper, we are only concerned with certain aspects of Active XML,
common to many other systems, among which Macromedia MX
and Apache Jelly mentioned above. We will thus use the term
dynamic XML documents to denote XML documents where parts
of the content is materialized XML data present in the document,
whereas other parts are generated by calls to programs (typically
code for database queries, business logic, or inclusion of graphical
plug-ins), when the content of the full document is needed.

We are concerned here in particular with dynamic XML docu-
ments where the dynamic part is provided by Web services. Recent
standards for Web services such as SOAP [31] and WSDL [31]
normalize the way programs can be invoked over the Web, and be-
come the standard means of publishing and accessing dynamic, up-
to-date sources of information. The increasing acceptance of these
standards naturally leads to including into XML documents calls to
Web services to capture the non-static parts of the documents. This
approach is followed, for example, in the .Net [8] framework, or in
DreamWeaver, which recently changed its interface from a Java-
based model of “components” to a web-service based one [20].
The aforementioned projects promote dynamic XML documents
primarily for presentation purposes. Pushing the idea further, the
Active XML system views more generally dynamic XML as an
essential tool for distributed data management, and in particular,
for distributed data integration [1, 3]. Note that the publication of
data via Web services is already a reality (see for instance, the Web
service interfaces to Google, to yellow-pages like UDDI, or to ge-
ographical data) which further motivates the use of Web services.

The documents we consider are dynamic XML documents, which
may be distributed and / or (partially) replicated. In a large-scale
data and service integration context, performance, scalability and
availability of documents are essential issues. These issues have
been addressed by a large body of research on replication and dis-
tribution for relational databases [29], client-server databases [9],
and LDAP directories [17]. With rare exceptions such as [7], this
domain remains largely unexplored for XML. To some extent, the
problem is not specific to dynamic XML documents. Whether dy-
namic or static, an XML document may be (i) distributed in several
parts located at different peers, while maintaining the logical unity
of the separated pieces, and (ii) partially or entirely replicated on
different peers. In the case of static XML, one may argue that a
distributed XML document is in essence not very different from a
distributed LDAP directory. However, the embedding of calls to
Web services in a document leads to a number of new interesting
aspects of distribution, particular to dynamic documents, which we

study in this paper:
(1) Accessing remote services: Such a document provides the
means to access remote services. This feature is already provided
by platforms supporting embedded scripts in HTML/XML docu-
ments, e.g., JSP, ASP.Net.
(2) Replicating data fragments with embedded service calls: a
call included in a replicated fragment may be activated from the
replica’s site, following a rather different communication path.
(3) Replicating service definitions: A special form of replication
may be achieved by replicating not only data, but also service defi-
nitions. This is in the spirit of “code-shipping”.

When replicating a service definition to a site in order to execute
it locally, it may be interesting to replicate as well the data that the
service call uses, so that the service is invoked on local data, with
less data transfer costs. If the service is declaratively specified (e.g.
an XML query language) it is possible to infer from the service
definition which data is needed, and replicate it accordingly. The
issue is then, given a query, to compute a tight superset of the data
it needs, avoiding to ship and replicate more than necessary.

We can now state more precisely the context of the paper and its
contributions. We are concerned with dynamic XML documents
(XML documents including calls to Web services) that are possi-
bly distributed over several sites, with portions of them possibly
replicated. In this context, we make the following contributions:
(1) Model. We introduce a simple model for replicating and dis-
tributing XML documents over several sites. The model may be
used for standard or dynamic documents. In general, users query-
ing distributed/replicated data prefer to ignore data location and
expect the system to locate data for them. But it is sometimes de-
sirable to specify which replicas of a given fragment to use (e.g.,
the one in the local cache, or the most recent one). We thus provide
a simple syntax for location-aware queries in XPath and XQuery.
(2) Query evaluation and optimization. In the presence of repli-
cas and distribution, many evaluation strategies are possible for a
given query, depending on the choice of the replica to use, and of
the sites performing each elementary computation. Typically, sev-
eral peers will collaborate to evaluate a query; each involved peer
will have to make choices in order to improve its observable per-
formance, based on a cost metric specific to this peer. We provide
a complete framework for XML query processing, in the presence
of distribution and replication.
(3) Tailored replication. To improve its observable performance, a
peer may be willing to replicate some data, possibly including ser-
vice calls, and even service definitions, as explained above. Such
replication is subject to natural constraints (e.g., storage space).
We provide a replication algorithm that, given a set of peers with
replication and distribution, and a specific peer, recommends some
replication steps that are guaranteed to improve the peer’s observ-
able performance. This algorithm is specially tailored to suit repli-
cation of dynamic XML documents.

XML and Web services are predicted a very promising future,
and XML documents with embedded calls to web services are al-
ready found in several existing products (see the examples above).
In the line of previous works on distribution and replication of re-
lational or LDAP data, distribution and replication of XML docu-
ments, whether dynamic or regular, is becoming an essential com-
ponent of distributed data management. This motivates our work.
Although the techniques we introduce are set in the context of an
ad-hoc model, we believe that they are pertinent to a very large
number of applications dealing with the management of distributed
XML data with replication and the access to such resources via
Web services.

The rest of the paper is organized as follows. Section 2 in-
troduces, through an example, the data model for distributed and
replicated dynamic XML documents, and the specific query con-
structs needed in this context. Section 3 presents the cost model that
we use to determine the queries cost. Then, Section 4 shows how
queries are evaluated at runtime, whereas Section 5 provides a dy-
namic replication algorithm aiming at reducing the global costs ob-
served at a given peer. Note that the main difference between query
optimization and data replication is that the first one is a short-term
investment, whereas the second one is a long-term investment that
will benefit to many query executions. After considering related
work in Section 6, we conclude.

2. DATA MODEL AND QUERY LANGUAGE
We start by describing our data model for dynamic documents

and highlight the particular issues that we study in the paper. Then,
we consider the particular query constructs required in this context.
Due to space limitations, the presentation is mostly informal and
based on a running example that will be used throughout the paper.

So far, we said we are dealing with dynamic documents. When
calls included in a dynamic document are executed, the latter is
enriched by the corresponding results. In some sense, such a doc-
ument may be seen as a (partially) materialized view, integrating
plain XML data and intensional data obtained from function calls.
The function calls inside the documents typically have input param-
eters (which are passed to the service being called). They also con-
tain indications on when the calls should be activated (e.g. hourly,
daily, only when the data is needed) and for how long the returned
data is considered valid (e.g. until the call is invoked again and
fresher data is available, forever - namely all the returned data is
accumulated etc.).
Dynamic XML Documents As in the standard XML data model,
a dynamic XML document may be viewed as a labeled tree. The
tree nodes represent the XML elements/attributes (with the labels
denoting the elements/attributes name/value) and the edges repre-
senting the component-of relationship among document elements.
A particularity here is that some elements, called function elements,
have a special meaning and represent calls to web service functions.
We will see their exact structure in the sequel. Since we are mostly
interested here in dynamic XML documents, unless stated other-
wise whenever we say further a document, we mean a dynamic
XML one.
Web Services We will consider two kinds of web services. (1)
Regular SOAP-based web services, which are essentially viewed
as black boxes. Via their standard WSDL specification [31], one
can find the type of their input and output, but essentially nothing
is known about their actual internal implementation. In the sequel,
we will name these kind of web services opaque. (2) Declara-
tive web services whose implementation is known and described in
terms of XQuery [31] queries on top of dynamic XML documents.
To the outside world, declarative services look just like the regu-
lar ones: they are wrapped and exposed to the world via a WSDL
specification. But, as we shall see, the extra knowledge about their
internal structure allows to better optimize their usage.
Peers A peer in our context offers some web services and con-
tains some dynamic XML documents, which may include calls
to services provided by the same or other peers. To support data
distribution and replication among peers (as will be explained fur-
ther), all the document elements in a given peer are assumed to
have unique identifiers, different from those of other peers. This
can be achieved, for instance, by prefixing the identifiers by the
peer name. This is to simplify the presentation since in reality only
some particular elements that are replicated need to be named.

Distribution Since dynamic documents may contain calls to ser-
vices on other peers, some minimal form of distributed compu-
tation is inherently part of this basic model. A higher level of
data distribution can be achieved by allowing a document to be
distributed over several peers. In terms of the tree data model men-
tioned above, this means that document nodes may now have exter-
nal children edges pointing to children nodes on other peers, and
analogously, an external parent edge if the parent of the node is on
another peer. We will provide further on a syntax for representing
such external edges.

Note that there is a fundamental difference between distribut-
ing document fragments among several peers via external edges,
and connecting two nodes in remote documents by an XLink [31].
No restriction is imposed on the nodes that can be connected by
XLink; in particular, it is possible that by following XLink edges,
one encounters a cycle. In contrast, a distributed XML document
is always a document. Namely, if the distinction between different
peers is ignored and the whole world is seen as one unique peer, the
document becomes just a regular (dynamic) XML document with
standard tree structure.
Replication of data and services To support data replication, we
allow the same document fragment to exist in several peers. More
precisely, recall that document nodes have identifiers. All children
of the same node with the same ID are considered replicas of a sin-
gle node. Also, a node may register more that one parent node, in
which case, these nodes are considered replicas of the same unique
parent node. The general graph structure may thus become a DAG.
However, we require that it still represents a document. We will
come back to this aspect at the end of the section.

Observe that, in general, replicas of a given node in distinct peers
may look different, either because only part of the node’s data was
replicated (e.g. only a subset of its children), or due to local updates
that have not yet been propagated. Much research has been devoted
to the issue of change control and conflict resolution in the context
of replicated data. Our work is orthogonal w/r to these issues and
could benefit from applying techniques like [18]; we do not directly
address control of replicas etc. Nevertheless, we will explain below
how, by a simple extension to XQuery, the user can get the means to
explicitly specify the location of data, when some particular copy
(e.g. the “master” copy, or the most recent one) is preferred over
the others.

Finally, a special form of replication can be achieved by replicat-
ing not only document fragments, but also web services. This can
be used in particular for declarative web services whose definition
is given in terms of XQuery queries. When the data used by the
service (or some part of it) is replicated to another peer, the service
may be replicated as well, with its definition adjusted such that,
when operating on the replicated data, it returns the same answer
as it would have return if evaluated on the original data (assuming
the two copies are in sync). We omit here the formal definition of
this notion of replication and will instead illustrate next the main
points via a running example.

2.1 Example
In the example, we start by considering a simple dynamic XML

document, without distribution and replication. Then we show how
some of its data fragments (and services) can be replicated or dis-
tributed, and discuss advantages of such a replication or distribu-
tion.

Consider a ski portal providing information about the various
states and their ski resorts. The portal contains the (dynamic) XML
document given in Figure 1. W.r.t the standard XML data model [31],
dynamic documents contain, besides regular data elements and at-

�document name=”SkiPortal”�
�state� �state name� Colorado �/state name�
�resorts�
�resort ID=”AspResort”� �name� Aspen �/name�
�snow cond ID=”AspSC”� good
�fun peer=”UnisysWeather” fname=”SnowConditions”

frequency=”every round hour”
validity=”last”�
�params��resort� Aspen �/resort��/params�

�/fun�
�/snow cond�
�hotels ID=”AspHotels”� �hotel�...�/hotel�
�/hotels�

�/resort� �resort� ... �/resort� ...
�/resorts�
�/state� �state� ... �/state� ...

�/document�

Figure 1: A dynamic XML document of the Ski Portal.

function OperativeSkiResorts($state)
implementation:XQuery
for $x in document(”SkiPortal”)/state[state name=$state]

/resorts/resort[snow cond/value()=”good”]
return $x

function HotelsInfo($state, $resort)
implementation:XQuery
for $x in document(”SkiPortal”)/state[state name=$state]

/resorts/resort[name=$resort]/hotels/hotel
return $x

Figure 2: The web services of the Ski Portal.

tributes, some special function elements denoted by the tag fun.
As can be seen, the document provides for each state, the state
name and information about its ski resorts, including in particu-
lar the resort name, the current ski conditions, and the listing of
hotels. Some of the data is given explicitly (i.e., the states and re-
sort names and hotel list) while some is obtained dynamically via
function calls. For instance the snow condition in each resort is
obtained by querying Unisys Weather. This data is refreshed once
an hour. To support data distribution and replication, all elements
are assumed to have unique identifiers. For brevity, we detail ex-
plicitly in the example below only some of these ids (e.g. in the
resort, snow cond, and hotels elements) while the rest are assumed
implicitly and omitted from the text.

To simplify the presentation we first assume below that the doc-
ument is not updated by any other means, namely the changes in it
are all due to functions invocation. We will remove this restriction
afterwards and consider consequences.

The dynamic part of the data is obtained by calling functions
provided by web services. As already mentioned, we consider in
this paper two kinds of web services. First, there are opaque ones
such as the SnowConditions function. It gets a resort element as
input, returns a string (e.g., “good”, “bad”) as output, and no in-
formation is available regarding its the actual implementation. We
also consider declarative web services, whose internal specification
is known and given as an XQuery [31] query on top of dynamic
XML documents. For instance, the ski portal above may provide a
web service with the two functions specified in Figure 2. The first
retrieves, given a state name, all the “sky-able” resorts in that state,
namely the resorts with good ski conditions. The second retrieves
the hotels of a given state and resort names.

To the users, declarative services look just like the opaque ones.
They are wrapped and exposed to the world via a WSDL specifica-
tion. However, the fact that the internal specification, and the data
being used is known, will prove to be very beneficial for optimiza-
tion purposes, and in particular for deciding which data needs to be

distributed or replicated and where.
To continue with the above example, consider a state ski center,

say of Colorado, that assists visitors in selecting good ski resorts
in Colorado and helps them find hotels near these resorts. The
ski center uses frequently the two service functions provided by
the ski portal, namely OperativeSkiResorts(”Colorado”), and Ho-
telsInfo(“Colorado”,$resort), where $resort is the name of some op-
erating resort (returned by the first function) that the visitors are
interested in.

There are a number of possibilities for running these requests. If
the two functions were opaque and the resort knows nothing about
their internal implementation, there are essentially two possibili-
ties: (1) Call the ski portal each time a service is needed and have
the portal compute the answer and return it, or (2) cache the re-
turned result and use it for some time, trading communication cost
for data accuracy.

For declarative services when their specification is exported, a
few other possibilities open up.
Query Frequency First, we have more precise information regard-
ing the validity of the cached data: by analyzing the OperativeSkiRe-
sorts query, we can see that its answer may change only every hour
- when the SnowConditions functions is invoked. Hence, to give
fully accurate answers to its visitors, the ski center needs to invoke
the function every hour, and cache data in between. Naturally, the
communication could be further reduced if some form of “update
propagation” mechanism were available, allowing to inform the ski
center on the changes in the portal data, and thus save the full call
re-invocation.
Replicating relevant data and services But even if such an up-
date propagation mechanism is not available, the communication
cost can still be reduced by providing the ski center sufficient in-
formation to compute the correct answers by itself. Assume that
the Colorado ski center computer is capable of (1) storing dynamic
XML documents, (2) invoking the web service calls embedded in
them, and (3) processing XQuery queries. Rather than just caching
the current query result, one could then decide to replicate (and
maintain) in the ski center computer all the relevant data, and pro-
vide a local version of the service queries. To continue with the
above example, it suffices to store at the ski center a portion of the
ski portal document, with the local variants of the OperativeSkiRe-
sorts and HotelsInfo services, as depicted in Figure 3.

The communication is now reduced to querying Unisys Weather
once an hour for all resorts in Colorado, rather than re-shipping
every hour, for all operative resorts, the full resort information. On
the other hand, more storage and processing resources are needed.

Observe the approach we take to distributing data. In the exam-
ple, the dynamic parts of the copied data are all computed using
UnisysWeather (an opaque service here). In general, the copied
data may also contain calls to non-opaque declarative services. In
this case, the process described above may be repeated for those
services as well, i.e., we may replicate locally the data they use
as well as the service code. This results in transforming recur-
sively these service calls into local calls. The main difficulty in
the context of turning external calls into local ones is (i) in decid-
ing which service should be made local, and (ii) determining how
to update the service code, which data should be replicated locally,
and which other services should then be made local also (and so on
recursively). These computations are based on the peer capabilities
and the tradeoff between the resources (typically communication
vs. storage and computation).

The main contributions of this paper are the definition of an ap-
propriate cost model and the design of optimization algorithms to
guide this choice.

�document name=”ColoradoSkiCenter”�
�resort ID=”AspResort”� �res name� Aspen �/res name�
�snow cond� good
�fun peer=”UnisysWeather” fname=”SnowConditions”

frequency=”every round hour”
validity=”last”�
�params��resort� Aspen �/resort��/params�

�/fun�
�/snow cond�
�hotels ID=”AspHotels”� �hotel�...�/hotel�...
�/hotels�

�/resort� �resort� ... �/resort� ...
�/document�

function OperativeSkiResorts(”Colorado”)
implementation:XQuery
for $x in document(”ColoradoSkiCenter”)/

resort[snowCondition.value()=”good”]
return $x

function HotelsInfo(”Colorado”,$resort)
implementation:XQuery
for $x in document(”ColoradoSkiCenter”)

/resort[res name=$resort]/hotels/hotel return $x

Figure 3: The Colorado dynamic document and services

�document name=”ColoradoSkiCenter”�
�resort ID=”AspResort”� �res name� Aspen �/res name�
�snow cond� good
�fun peer=”UnisysWeather” fname=”SnowConditions”

frequency=”every round hour”
validity=”last”�
�params��resort� Aspen �/resort��/params�

�/fun�
�/snow cond�

�hotels ID=”AspHotels”�
�externalURL� http://www.ski.com/SkiPortal
�/externalURL�

�/hotels�
�/resort� �resort� ... �/resort� ...

�/document�

Figure 4: The Colorado document with external edges

Partial replication In the example above, the full subtree rooted at
the state element was copied at the local ski center. There are cases
where one would prefer not to replicate so much data, e.g., when
storage space is limited and hotel listings for the resorts only rarely
used. In such case, it suffices to replicate just the resort names
and their ski conditions, without the hotels data, and just provide
access to this data through the ski portal, when needed. This can be
achieved using external edges, as illustrated in Figure 4.

The externalURL sub-element of the hotels element, together with
the ID, indicate where the data of this element may be found. From
a semantic view point, the actual physical location of the data is
irrelevant, i.e., the “value” of the document is as if the data was
physically there. The external edge is simply viewed as an inten-
sional description of this missing data and gives the means to obtain
it if needed.

Observe that while the above external edge points to “real” XML
data, one can, in the same way, point to dynamic external data. For
instance, if Unisys Weather charges money for its services, one may
prefer to leave the dynamic snow cond element on the ski portal
and just point to it via an external edge:

�snow cond ID=”AspSC”�
�externalURL� http://www.ski.com/SkiPortal
�/externalURL�

�/snow cond�
The use of external edges brings new challenges to query pro-

cessing. The query processor should follow external edges as if

�document name=”SkiPortal”�...
�resort ID=”AspResort”�
�snow cond ID=”AspSC”�
�LRUlanretxe� http://www.HS.com/ColoradoSkiCenter
�/LRUlanretxe� ...

�/snow cond�
�hotels ID=”AspHotels”�
�LRUlanretxe� http://www.HS.com/ColoradoSkiCenter
�/LRUlanretxe� ...

�/hotels�
�/resort� ...
�/document�

Figure 5: Inverse external edges

they were local, and query evaluation should continue at the re-
mote peer. For instance, consider the Colorado HotelsInfo service
from Figure 3. The query starts at the root of the ColoradoSkiCen-
ter document. When reaching the hotels item, the external edge is
traversed. The remaining part of the query (i.e. the path expression
hotels/hotel) is evaluated at the Ski Portal peer and the resulting ho-
tel items are sent back to the ski center computer. The query is thus
“split” into two parts, each being executed on a different peer, with
the communication between the peers consisting of query shipping,
in one direction, and result shipping, in the other way.
The cost model and query optimization algorithms, that we present
in the sequel, account for such query splitting, for both the static
and the dynamic parts of the data..

In the same way, if several external replicas exists, one may
record them all (or some preferred subset) by listing the relevant
URLs. The query processor may then choose any one of these repli-
cas. If all replicas are in sync, an equivalent result is obtained no
matter which replica is used. But it certainly may affect the per-
formance. When the replicas are not synchronized, we may want
to give the user the possibility to specify explicitly which copy is
preferred. We will consider these issues in more details further.

Remark: The external edges illustrated above allow a node (e.g.
resort node at the Colorado document) to point to its external chil-
dren (the hotels and snow cond elements of the ski portal docu-
ment). Similarly, a node may have an external parent. Such ex-
ternal inverse edge can be recorded as depicted in Figure 5 via the
LRUlanretxe sub-element (the inverse of “ externalURL”). Note that
now, a query that traverses the tree upwards and crosses one of
these elements has a choice whether to continue the computation
with a local parent resort element (if it exists), or cross the external
edge to an external one.

We assume that if a document points to external data the other
side also records the inverse edge. Note however that one may still
have replicas that do not point to each other. The intuition is that
when part of a document replicated to a distant peer, the owner may
or may not be in interested in keeping the connection between the
distant copies (e.g. in the style of caching). But when such a con-
nection is desired, we assume it to be symmetric for both peers.

Updates and “master/slave” policy So far we assumed that the
only changes in the documents are due to function invocations.
When updates are allowed things get naturally more complex. Main-
taining consistency over replicated objects is a well-known difficult
issue [18]. A typical solution, which is quite acceptable in P2P en-
vironments, is to have each object owned by a single master who is
in charge of maintaining the various copies in sync. If the various
copies are the children of a single element, then this element is nat-
urally the candidate for being in charge of synchronization, i.e., for
being the master of these replicas. Other policies may be preferred
in some cases.

For instance, going back to our example, assume that the Col-

�document name=”SkiPortal”�
�state� �state name� Colorado �/state name�
�hotels ID=”AspHotels” status=”stale”�
�externalURL status=”master”�

http://www.HS.com/ColoradoSkiCenter
�/externalURL�
�hotel�...�/hotel�...

�/hotels�
�/state� ...

�/document�
Figure 6: Master and stale replicas

orado ski center is in charge of updating the hotel information for
the state. One option is to put the state’s hotels information at the
Colorado peer and simply have the ski portal point to it via external
edge. If the ski portal users are willing to settle for less accurate
information in return to faster response, the portal could keep a
(possibly stale) replica of the data and only refresh it periodically.
Note that the portal may also decide to keep both a (possibly stale)
copy of the local data and an external edge to the master copy, as
illustrated in Figure 6. Depending on particular user needs, one or
the other will be chosen.
Consistency of documents with distribution Consider a dynamic
document in our framework. It may now spread over several peers
and have replicated fragments. We demand that the document is
consistent. More precisely, we impose that its collapsed version,
i.e., the graph obtained by merging all nodes that are determined
to be replicas (children of two nodes with the same ID or two par-
ents of the same node) should represent a regular tree-structured
dynamic XML document. In the present paper, we will simply
assume that this is always the case, i.e., that all our distributed doc-
uments are consistent. It is easy to design a distributed algorithm
for consistency maintenance, but running such an algorithm might
be costly. This cost may be greatly reduced by forbidding a single
node to have two distinct parent replicas. Now, in a typical applica-
tion, a distributed document evolves over time from (a) updates at
the various peers, and from (b) adding or removing data replication
among peers. Some operations requiring extensive global checks of
consistency should be avoided as much as possible. To guarantee
that changes yield a consistent document (without actually having
to perform expensive verification), updates should be restricted to a
safe set of operations. For instance, to check the safety of external
links, one could possibly define a global operation that guarantees
the bi-directionality of links.

2.2 Queries
In the usual XML context, the evaluation of an XQuery query

involves traversing the document tree and selecting nodes based on
the path expressions and filters appearing in the query. With dis-
tributed/replicated documents, things become more complex. Each
element encountered in the evaluation of a path expression, on a
given peer p, may contain some data (residing on that peer), and
may also point (via external edges) to some replicas (on different
peers). The question is which of the element versions should be
used. Some of the possibilities are the following.

(1) One can choose to ignore all the external edges and consider
only the data residing within the given peer p. For instance, if com-
munication cost is very high and the local information is known to
be sufficient.
(2) At the other extreme, one may want to use the element’s local
data as well as follow all the given external edges to its replicas,
in order to get the maximal available information. This seems a
common choice for P2P architecture. In Gnutella [11] for instance,
the queries are forwarded to all known neighbor peers, and so on

for $x in document(”SkiPortal”)/state[state name=”Colorado”]
/resorts/resort

replicate $x with resort name//*
snow cond//*
hotels as external link

at peer ”http://www.HS.com/ColoradoSkiCenter”

Figure 7: A replication query.

recursively until a time-to-live expires.
(3) An intermediate choice is to (a) choose some arbitrary copy (for
instance the cheapest one, based on some cost metrics), or perhaps
(b) consider the element’s local data when available, and follow an
external edge (e.g. the cheapest one) only when such local infor-
mation is not available.
(4) One may also be interested in following a particular edge (for
instance (a) ”leading to a replica on some specific peer pi”, or (b)
“a master replica, if such exist among the given edges”).
(5) Finally, one may want to give a preference list, for instance “use
the master version if such exists among the pointed replicas; oth-
erwise use the local data if available; and if not, use the cheapest
external one.”

While often users would like to let the system choose which ver-
sion to use, based on some predefined policy/cost scheme, it is con-
venient to have the means to describe such policies declaratively,
as well as override them when needed. To support this, we use
XQuerydr , a natural extension of XQuery, that allows to account
for distribution and replication. We detail bellow how the for/let
clause, the where clause, and the return clause of XQuery are ex-
tended. Next we consider a cost model for XQuerydr queries.
The for/let clause is similar to the one of XQuery except that
path expressions (and their subexpression) can now be annotated
by peer-qualifiers (to be defined below). For instance rather than
using a path of the form p � path��path�� � � � �pathn, where
pathi, i � � � � � n, are standard XPath expressions, we can use
p� � fpath�g�P��fpath�g�P�� � � � �fpathng�Pn, where the
Pi’s are peer-qualifiers. The intuitive semantics is that, for each
element encountered in the evaluation of pathi, the only replicas
being considered for the evaluation of the remaining path are those
residing on peers that satisfy the corresponding peer-qualifier Pi.

The peer-qualifiers can in general be any boolean function over
elements/external edges; we use a shorthand notation for some com-
mon qualifiers. In particular, we use local, all, any, localORany, pi,
master, and masterORlocalORany to denote the selection criteria
described in items 1, 2, 3(a) and 3(b), 4(a) and 4(b), and 5 above.
When no peer-qualifier is used for the path expression the default
interpretation is any. For instance, the path expression
fdocument(”ColoradoSkiCenter”)

/resort[resort name=”Aspen”]/hotels/hotelg@local,
when evaluated on the Colorado document of Figure 4, returns the
empty answer since the hotels element on that Colorado peer con-
tains no local data. On the other hand the two path expressions
fdocument(”ColoradoSkiCenter”)

/resort[resort name=”Aspen”]/hotels/hotelg@localORany
and
fdocument(”ColoradoSkiCenter”)

/resort[resort name=”Aspen”]g@p�
/fhotelsg@p�fhotelg@local

where p� and p� are the Colorado and ski portal peers, resp., (with
documents as in Figures 3 and 1), both return the set of hotel ele-
ments at p�. Finally, the query
fdocument(”SkiPortal”)

/state[state name=”Colorado”]/resorts
/resort[resort name=”Aspen”]/hotels

/hotelg@masterORlocalORany,
when evaluated on the ski portal document of Figure 6, returns the
master copies of the hotel elements, from the Colorado peer.

Note that, if all the data replicas are in sync, all the peer qualifiers
considered above, besides local, can be used interchangeably: they
all return (replicas of) the same result. This is the same result that
would be obtained if the path expression were to be evaluated on
the “collapsed” version of the data.
The where clause in XQuery can compare the nodes assigned to
the query variables, e.g. where $x = $y. For regular XML docu-
ments the semantics is clear: the equality is satisfied when $x and
$y are assigned the same document node. In the presence of repli-
cation one can distinguish two cases. (1) $x and $y contain replicas
of the same node (namely have the same node id but may reside on
distinct peers), and (2) $x and $y contain the same node replica
(namely same id and same peer). In XQuerydr we use � to denote
the former type of equality and �� for the latter.
The return clause. As in standard XQuery, the document fragment
associated with each variable assignment in XQuerydr consists of
the subtree rooted at the assigned node, on the peer where the node
resides (plus the external edges embedded in this data, if such ex-
ist). The semantics of the return clause is standard, with one no-
table exception: all elements in the result are assigned fresh new
ids. This is compliant with the usual XQuery semantics where the
answer forms a new document.

Remark (replication) We conclude this section with a remark
regarding data replication. XQuerydr queries, as described above,
return new documents. A similar syntax can be also used for repli-
cating existing data. An analogy to the return clause, XQuerydr
introduces a special replicate clause which operates like the return
except that the element ids in the result are preserved.

A replicate $var at peer pi clause copies into peer pi the subtrees
rooted at the nodes assigned to �var (fusing nodes with common
IDs). A more selective replication, copying only parts of these sub-
trees, can be performed by adding to the replicate clause a with
statement that describes, using a path expression, the specific data
to be copied and whether the remaining non copied one should be
pointed to via external links or not.

For instance, Figure 7 replicates, to the Colorado peer, all the
resort elements in the Colorado state, yielding the document de-
picted in Figure 4. For each resort, the nodes residing along the
paths resort name//, snow cond//, and hotels are replicated as well.
Namely, the resort name and snow cond subelements are replicated
with all their rooted subtrees, while the hotels element is replicated
alone, without its rooted subtree. For the last one, an external link
pointing to this external subtree is added instead.

The syntax and semantics of our with clause is similar to the one
introduced in [14] for the definition of views over semi structured
data. Indeed, replicas can be considered as materialized views of
the external data. For space reasons, we omit the full syntax here.

3. COST MODEL
A set of peers, each containing some data and providing some

web services (opaque or XQuery-based ones), is called a configu-
ration. For a given configuration, the system workload consists of
the service calls invoked by the dynamic documents in the config-
uration, as well as of queries/web service requests posed by users
at the various peers. The goal of this section is to establish a model
for evaluating the costs entailed by such a workload.

In a peer-to-peer environment it is unrealistic to hope to optimize
the overall system performance. Indeed, our cost model intends to
reflect the observable performance of a given peer: the costs and

for $x in document(”ColoradoSkiCenter”)/resort
[resort name=$resort]/hotels/@ID

return $x

for $y in document(”SkiPortal”)//hotels[@ID=$x]/hotel
return $y

Figure 8: Intra-peer sub queries at the Colorado peer (top),
and USA Ski Portal (bottom) peer

performance metrics perceived by, and important for, this particular
peer. This observable performance is influenced by some objective
parameters (e.g. size of data transfers, from/to a given peer, in-
curred by the execution), and some subjective parameters (e.g. the
relative impact of communication, space, and computation costs on
the overall cost afforded by the peer.) This two types of parameters
will be incorporated in our cost formulas.

Before presenting the cost model, let us first explain two of the
main ideas guiding its particular design.

Unifying user queries and services As explained above, the work-
load in a given configuration consists of (1) the invocation of web
services entailed by the dynamic documents, and (2) queries and
web services requested by the user. The frequency of the former is
specified in the dynamic documents while that of the latter is de-
termined by the user needs. But, ignoring this minor difference,
they can all be thought of as requests with some associated fre-
quency. With this view, user queries and XQuery-based services
are naturally unified. Opaque web-services can be seen as ”black-
box” queries whose actual code is unknown. We thus model a given
workload as a set of queries (having known or unknown code), each
invoked at some given peer, and having some associated frequency.

Decomposing queries on peers Consider a query Q invoked at
some peer P�. The processing of Q may involve some local data
of P� as well as some remote data pointed by external links and
residing on another peer P�. Q may need to consult this data (and,
if it points to additional peers, their data as well, recursively). The
processing of Q can thus be viewed as decomposed into several
”intra-peer” sub-queries: each such sub-query is evaluated on a
particular peer, consulting only the peer’s local data, and commu-
nicates with other peers in order to forward some finer sub-queries
or send/receive data or computation results. Consequently, rather
than defining the cost of a given workload directly, for the original
user/service queries, we will look at their decomposed version and
define the cost via these smaller, intra-peer queries.

For instance, consider the Colorado document in Figure 4 and
the HotelsInfo query in Figure 3. A possible way to evaluate the
query is to decompose its processing into two parts. The first one
queries the Colorado document, using the query depicted at the top
of Figure 8; it retrieves the id of the remote hotels and asks the
USA Ski Portal to evaluate the rest of the query, starting from this
id. The USA Ski Portal then evaluates the query depicted at the
bottom of Figure 8 and returns back the answer.

For ”black box” queries (representing opaque web services) we
cannot know if, or how, they are decomposed, and will thus con-
sider them as being evaluated locally at the peer that provides the
service. For regular queries, we defer the presentation of the de-
composition algorithm to Section 4; we will assume, in the rest of
this section that we are given that decomposed workload, and pro-
vide a cost model for such workloads. Our cost model will never-
theless capture the overall cost of the original workload. For that, it
uses various elementary parameters such as the computation power
consumed by each intra-peer query at its given peer, the size of the

data transfered between various intra-peer queries etc.
How the value of these parameters is obtained for each decom-

posed query will be shown in Section 3.3 and Section 4.2. For now,
we just assume that they are given, and explain below their partic-
ular role in the cost model.

Remark: To conclude the discussion, recall that service calls
may have parameters. To fit into the above picture, each of the
parameters can be viewed as another query whose output is sent to
the service query before its evaluation.

We are now ready to define the cost model. We first describe in
Section 3.1 the various (subjective and objective) parameters used
by the cost model. Then Section 3.2 presents the cost formulas that
aggregate these elementary cost components. Finally, Section 3.3
describes the statistic and cost parameters available at every peer;
however, running a query on documents of several peers requires
some distributed knowledge, which has to be gathered by the peers
through a collaborative process. It turns out that this process is
similar to the process of query evaluation itself, and therefore we
present them both in Section 4.

We will use below the following notations. We denote by M �r� c�
a matrixM of size r�c, and byMi�j , where � � i � r, � � j � c,
its component at line i and column j. Mj denotes its jth column.
Similarly, V �r� denotes a vector V of r components, and Vi denotes
its ith component. A (decomposed) workload W with n intra-peer
queries is represented by an n-ary vector W�n�, each component
Wi being an intra-peer query. The peer of each query is recorded
in a matrix L�n� s�, s being the number of peers, where Li�j � � if
Wi runs at peer Pj , and � � otherwise. Note that each row of the
matrix contains only one � value.

3.1 Cost Model Ingredients
The following objective cost parameters are needed to characterize
a given workload W:

Frequency vector F . To each workload query Wi, a frequency
freq�Wi� is associated, describing how many times the query is
asked/the service call is invoked, on average, during a day. A vector
F �n� � �freq�W�� , � � � � freq�Wn�� records these frequencies.
Data dependency matrix �. Recall from above that producer con-
sumer dependencies may exist among the decomposed sub-queries
/ service calls, where one takes as input data output by the other.
These dependencies are described in data dependency matrix ��n� n�,
where �i�j is a real number between 0 and 1, specifying which frac-
tion of the output of Wi is used as input to Wj .
Output vector O. We use a vector O�n� detailing the actual size (in
Kb) of the output of each workload query Wi. Normally, one also
needs to consider the size of the input received by each Wi. By
definition of O and �, the input vector is given by � � O.
Computational and space costs. Each query Wi requires some
CPU effort and some intermediate storage space on the peer on
which it runs. These are described in two vectors Comp�n� and
Space�n�, where Compi and Spacei detail, resp., the number of
CPU cycles and space consumption (in kilobytes) of Wi.

The following are the subjective parameters (or weights) influ-
encing the observable performance for a given set of s peers.

Communicating cost weight. Two vectorsBW IN �s� andBWOUT �s�
describe the relative importance, for each peer, of the volume of the
received, resp. sent data.
Space cost weight. We use a vector sp�s� to record the relative
importance of the consumed storage space at a given peer.
Computing power cost weight. A vector cp�s� details the relative

importance of computing power consumed on each peer.

The components of all vectors above are numbers between � and
�, which allow weighting the relative costs of communicating (resp.
storage and power) among different peers. The higher are these
numbers, the more expensive is for the peer to afford the communi-
cation, storage or computing tasks (measured in Kb, Kb and CPU
cycles respectively).

3.2 Cost Formulas
Using the previous objective and subjective parameters, we are

now able to compute the global costs incurred by the workload.
The formulas for calculating the data used by a given workload

on a set of peers are the following:

Mi�j � �i�j � Oj �min�Fi� Fj� (1)

D � TL �M � L (2)

In the above formulas, (1) defines the inter-query data transfer ma-
trix M , where Mi�j is the volume of data transferred from one
query Wi to another query Wj . (2) defines the inter-peer data
transfer matrix, where Di�j represents the volume of data trans-
ferred from peer Pi to peer Pj due to all queries in W .

Remark In a peer-to-peer context, it may be possible that not all
parameters in the formulas above are known. It may happen that
the size of data transfer between two sites is unknown or unpre-
dictable. Our hypothesis is that each peer has some cost knowledge
about its “neighborhood” (e.g. its LAN), and, as a consequence, is
always eager to delegate work rather to peers that it “knows” (as
opposed to unknown peers with unknown performances).

At this point, we can define the computation, communication
and storage costs incurred by the workload. These are represented
by the four vectors CGlobComp�s�, CGlobReceiv�s�, CGlobSend�s�,
and CGlobSpace�s�. The jth components of each vector describes
the observable cost of computation, received data, sent data, and
space, resp., of peer j. Weights are used to adapt the result to the
cost investment of each peer. The vectors are computed as follows.

CGlobComp
j � fComp � Lgj � cpj (3)

CGlobReceiv �s� � D �BWIN (4)

CGlobSend�s� � TBWOUT �D (5)

CGlobSpacej � fSpace � Lgj � spj (6)

3.3 Local Cost and Statistic Information
Each peer has information about the following cost parameters.

The frequency of queries can be easily inferred by execution traces,
while the frequency of service calls is encoded in the dynamic doc-
uments. The computational cost vector is obtained for each query
by measuring the CPU effort required to execute it. A slightly more
difficult task is to measure the output data size and the space cost
vector (which takes into account the sizes intermediate results). To
that purpose, each peer provides estimates of the cardinality of a
given path expression over the documents of that peer. The sim-
plest way to implement such estimates is to store for each possible
path in the document the number of nodes to be found under that
path. Still, such statistics may be quite imprecise, since they do
not account for the skew in the parent-child distribution. For con-
structing and storing more elaborated XML data statistics we rely
on previous work described in [2] or [10].

Finally, in addition to data cardinalities, each peer has to provide
also some measures on the average element size, in Kb, as well

as regular data statistics, regarding the value nodes (leaves of the
XML tree).

Besides the above information which is rather standard for XML
query processing, we introduce here a new summary information,
specific to our context of distribution and replication regarding exit
points. Exit points are nodes which have outgoing external links,
i.e. those connected to remote data nodes. They correspond to:
(1) a node e� if it has an external outgoing edge to the replicate (on
some other peer) of one of its children e�; and (2) a node e� if it has
an ascending incoming edge from a replica (on some other peer) of
its parent node e�.

As we will see later, this information can be used for decompos-
ing a query among several peers.

4. DISTRIBUTED EVALUATION
This section presents our query evaluation strategy over a fixed

configuration of replicated and distributed dynamic XML docu-
ments. Section 4.1 explains briefly the principles of our evalua-
tion strategy, in particular, our query decomposition strategy, and
shows its innovative aspects with respect to the state of the art in
distributed query processing. We then move to explaining our cost
information gathering and query processing strategy. For ease of
explanation, we first focus on a simple class of linear XPath queries
only. For such queries, Section 4.2 presents collaborative gathering
of cost information, while Section 4.3 discusses their evaluation.
Finally, Section 4.4 shows how to evaluate in general XQuerydr
queries.

4.1 Outline of Query Evaluation
Consider a peer P which has to execute a simple path expres-

sion query Q. It may happen that some data required by Q is miss-
ing from P , because of distribution; also, data needed by Q can
be found at more than one peer, due to replication. P adopts the
heuristic of executing as much of Q as possible, say Qlocal, ob-
taining an intermediate result, and delegates one or several further
subqueries Qnext to one or several other peers Pnext. Each Pnext
will receive the intermediate results and continue processing, by
applying the same method: attempt to evaluate all Qnext and, if all
data is not available, delegate further etc.

Data shipping vs. query shipping This novel approach com-
bines data shipping and query shipping, and is specific to our prob-
lem: answering queries over distributed data without knowledge of
the data distribution. This information is missing due to the au-
tonomy of peers in a large-scale system; therefore, traditional dis-
tributed query decomposition methods for distributed DBMSs [29]
and wrapper-mediator systems [19] do no longer apply. Among the
latter, our approach is most similar to Garlic’s [19], where wrap-
pers decide how much of the query sent by the mediator they solve.
However, in Garlic, the mediator has global information about data
location, and all wrappers report directly to it, which is no longer
the case in our context. Control over execution is distributed also
in [25], where peers may tweak an existing query plan; in contrast,
in our setting, no plan can be computed in advance. In the PeerDB
peer-to-peer system [23], a query asked on peer P is propagated as
such from P to other peers, and the answers are all unified at P .
This strategy does not apply for us, as data distribution and replica-
tion lead to query decomposition.

Communication pattern In our query processing strategy, at each
step, the sub-query Qnext includes the address of the peer P on
which Q was originally asked, so that the result is returned di-
rectly to P , since it requires less communications (also done in

Algorithm what-if
Input: linear path expression query Q, current peer P
Output: query decomposition and cost information info

1 decompose Q � Qnext�Qlocal�, such that Qlocal is the
2 longest prefix of Q that can be evaluated at P
3 by analyzing the exit points at Pc
4 info��record peer=P�
5 �decompose local=Qlocal next=Qnext/�
6 �local cost=cost�Qlocal� fanout=NQlocal

7 size=size�Qlocal�/�
8 �/record�
9 if Qnext ���

10 then cand � the set of peers known to P to possess some
11 data needed by Qnext� nextCost � �
12 foreach Pcand � cand
13 infocand � what-if�Qnext� Pcand�
14 if P�subjCost�infocand� � nextCost
15 then nextCost � P�subjCost�infocand�
16 Pnext � Pcand
17 add �bw�P�Pnext�/bw � as child of info
18 add infocand as child of info
19 return info

Figure 9: What-if cost analysis.

PeerDB [23]). The drawback, with respect to confidentiality and
security, is that all peers get to know who initiated the query; we
felt the performance gains outweigh this disadvantage.

4.2 Collaborative Information Gathering
Linear path queries In this section, we are only concerned with
linear path queries. These are extended XPath queries as described
in section 2.2, and further simplified. First, without loss of gen-
erality, we assume they only go downwards, i.e., no ��� step [24].
Second, linear queries can only have interspersed predicates of the
form �text�� � c�, applying simple selections on the values of an
element. For example, hotel�name�text�� ��� Star��� is a lin-
ear query, while hotels�hotel�name�text�� ��� Star��� is not.
Following XPath [31] semantics, respected also in XQuerydr , any
XPath query can be decomposed into a number of linear corre-
lated queries. For example, the non-linear query Qnl above can
be decomposed into: Ql� � hotels, Ql���x� � �x�hotel�name
�text�� ��� Star���, such that Qnl � fxjx � Ql�� Ql��x� �� �g.

With respect to our query processing strategy, linear queries can
always be decomposed between P and a single Pnext. To decide on
Pnext, the local statistic and cost estimates at P (Section 3.3) are
not enough. P needs to learn, first, the peers which may contribute
to evaluating Q, and second, query cost information regarding these
peers. We now explain how this information is gathered.

Simplifying assumption : Q location-unaware For ease of ex-
planation, we first assume that Q specifies no preferred peer for
evaluation, which in XQuerydr we denote as fQg�any.

Candidates for the role of Pnext are those peers (i) having (at
least some of) the data needed byQnext, and (ii) such that P knows
they have this data. It turns out that the set of such candidate peers
are exactly those to which lead external edges from P . Among
these, P makes his choice aiming at an observable optimization,
meaning the chosen Pnext is the one minimizing the costs of Q
which are relevant to P 1. This cost is determined by several com-
ponents, a priori unknown to P : (i) the statistics of data at Pnext,
(ii) the cost parameters (CPU, bandwidth etc.) specific to Pnext,
and, (iii) the exit points of Qnext, which influence the decomposi-
tion of Qnext that Pnext may apply at its turn.

�Remember from Section 3.1 that a peer’s observable performance may
include, with different weights, computing costs associated to other peers.

To obtain such estimates, P holds an what if analysis, shown
in Figure 9. P gathers, in an XML-structured info record, cost
information from several peers, in a bottom-up manner. At lines
4-8, info is initialized with the objective statistic and cost informa-
tion gathered at the local decomposition step, performed by P . For
example, the cost element encapsulates all CPU and space costs
associated to running Qlocal at P , denoted Comp and Space in
Section 3.1. Similarly, the size element encodes the output size of
query Qlocal, corresponding to the O vector in Section 3.1. Also,
the decompose element by itself gives information about work-
load decomposition, and implicitly encodes the data dependency
betweenQlocal andQnext, modelled by the matrix � in Section 3.1.

If Qnext is not empty, P asks what-if questions on all candidate
peers Pcand (line 12). If Pcand is empty, the query fails (omitted
for brevity in Figure 9), since P does not know where to find the
data it needs. Otherwise, P selects as Pnext the peer which opti-
mizes P ’s own subjective (observable) global cost. To evaluate this
cost, P applies its own weights on the objective cost information
returned in infocand (line 14). The information returned by the
most promissing peer is inserted into P ’s own information record,
together with the bandwidth required to ship the result of Qlocal to
Pnext. The final info contains thus a global view of: the best way
Q may be decomposed from the point of view of P ’s observable
performance, and all objective associated costs.

Remark (optimality) Q is decomposed by several peers, each
of which returns the optimal decomposition from its own view-
point. This does not lead to the absolute globally optimal (for
P) decomposition of Q. But this decomposition is not achievable
for several reasons: universal data location information cannot be
found on each peer; and all peers are not willing to please P , at
any incurred cost for them. They collaborate in query processing,
but have the freedom of choosing how to do this. As a simple ex-
tension, a peer may also refuse to evaluate Qnext if its minimal
subjective cost is too high; in this case, the peer returns �null� as
a record, to signal it will not work. Thus, our algorithm achieves
the most consensual decomposition of Q from the perspective of
all collaborating peers.

General case: Q location aware If (fragments of) Q specify re-
strictions on the data location, using some XQuerydr keyword other
than any, the algorithm in Figure 9 is modified as follows. The
choice of the cand set is restricted to those peers that fullfill the
conditions in Figure 9, while also satisfy the location restriction.

Finding master copy nodes Following our data model and query
decomposition strategy, if Q specifies as location �master, and P
has no link to the master, Q may fail; thus, it is possible that from
P , the master document is forever lost. Since normally users don’t
expect, say, the master copy of USASkiCenter to disappear, we take
two new measures. First, every document name is an URI, iden-
tifying the peer on which it originated; either the document root
will always be there, or the peer will know where it has moved (in
the style of HTTP redirection). Second, we restrict our replication
and distribution model so that external links always connect master
nodes in both directions. These measures ensure that master copies
of a document always exist, are connected, and can be found start-
ing from the root.

The decomposition algorithm in Figure 9 involves many mes-
sage exchanges; we note that (i) these messages are small and the
benefits of making a good choice are likely to outweigh this over-
head, (ii) the decomposition cost is reduced if it is run when the
bandwidth is cheaper (e.g. at night for a mobile phone). Further-
more, the obtained cost information could be cached for some time,

avoiding running the what-if analysis every time Q is evaluated.

Variant: cost-ignorant query decomposition However, ifP wishes
to avoid such an analysis, but has no cost information, instead of
the loop at lines 12-18, it may choose Pnext just by minimizing the
transfer costs from P to Pnext (potentially, a bad choice).

4.3 Evaluating Linear XPath Queries
A linear XPath query Q (as defined at the beginning of Sec-

tion 4.2), asked on peer P , can be evaluated in two ways.
First, if P runs a what-if cost analysis (or had done so previ-

ously and cached the result), then the returned info contains all the
information for decomposing Q: ignoring its �local� and �bw�
descendent elements, info encodes in fact a distributed query plan
for Q. To evaluate Q, P and all other peers will (i) evaluate their
Qlocal as identified by info, and (ii) ship the result to their Pnext,
together with the indication that the final result should arrive at P .
The last peer involved in evaluation returns the result to P .

Alternatively, if no info is available, then the evaluation of Q can
be explained as a variation of the algorithm in Figure 9. At lines 1-
3, Qlocal is determined by actually evaluating as much as possible
from Q at P ; no �record� is constructed. At lines 13-15, instead
of running what-if on candidate peers, P directly chooses a Pnext
(e.g. by optimizing its subjective cost for data transfer from P to
Pnext), and asks Pnext to evaluate Qnext and make sure the result
will be transmitted back to the original peer P .

Note that while we use top-down XPath semantics to explain
query decomposition, linear query fragments do not need to be
evaluated this way. Instead, as soon as the definition of Qlocal is
understood by looking at the exit points, Qlocal can be delegated to
whatever storage the peer uses for its evaluation; efficient methods
for evaluating XPath have been proposed, e.g., in [12].

4.4 Evaluating XQuerydr

The evaluation of complex XQuerydr queries builds upon the
algorithm above for evaluating linear path queries. The key point
here is that any XQuerydr query can be syntactically rewritten (while
preserving its meaning) so that it only contains linear path expres-
sions, by introducing new variables, as we did in Section 4.2; rules
for such XQuery simplification of XQuery are described in [21]
and [31]. Among the resulting linear path queries, there may exist
dependencies, as for example the one identified by the intermedi-
ary variable �x in Section 4.2. These dependencies entail a partial
order on the linear path queries.

On top of the linear path queries, the original query imposes a
set of joins, perhaps outerjoins [28], and projections. We adopt the
simple strategy of running all such operators at the peer P where
the query was asked. The reasons are the following: (i) the in-
creased difficulty of estimating precise join costs at distant peers,
(ii) the potential blow-up in the search space of join orderings, if
we distribute them over different peers. Furthermore, such join
distribution is impossible if the query decomposition is not known
before actually evaluating Q (variant at the end of Section 4.2).

A simple case when distributing joins is easy and beneficial is the
following. If query decomposition is performed before evaluating
it, and if two linear path queries are delegated at some point to
the same peer Px, then P may push to Px also any join predicate
over the results of these linear path queries. This is subject to Px’s
agreement to do the join, and the subjective interest of P in pushing
the join (e.g., if the join produces too much data, P may prefer to
perform it by itself). Projections can be pushed in a similar manner.

An XQuerydr query is thus evaluated as follows. First, simplify
it as described above. Second, evaluate as described in Section 4.3

the resulting linear path queries, in the topological order dictated
by their dependencies. Finally, order and apply the remaining op-
erators at P .

5. REPLICATING DATA AND SERVICES
For a given configuration and workload, every peer measures its

observable performance, as previously explained. In order to im-
prove its observable performance, the peer may want to change the
configuration; due to peer autonomy, the peer can only modify his
own set of data and services. We present below an algorithm that,
given a configuration and a specific peer in the configuration, rec-
ommends some replication steps that are guaranteed to improve the
peer’s observable performance.

Before presenting the algorithm, let us consider what are the pos-
sible replication scenarios that peer P may consider, when attempt-
ing to improve the observable performance of a given query.

Accessing remote information (do not replicate) When not all
the data needed for the query evaluation resides on P , it may need
to consult remote data, for instance via external links, as in Sec-
tion 4. This entails some communication costs.
If the query frequency is high and storage cost at the given peer
is low, P may prefer to replicate the relevant data and use a local
version rather than the remote one.
Replicating data fragments with or without service calls When
replicating data, P may take the replicated fragment including the
service calls embedded in it; thus P will call the service itself. Al-
ternatively, P may leave (some of) the calls to be executed at the
remote peer, and just refer to the data they return via external links
(as illustrated in the running example of Section 2).

This second scenario may be cost effective. For example, if the
service provider charges some fee from the caller, leaving the call
on the remote peer spares P from this fee; or, if the call is invoked
more frequently than the query that uses its data, its output is trans-
mitted to P at the frequency of the query rather than that of the call
invocation, thus entailing less communication.
Replicating service definitions When the data is replicated to-
gether with its embedded calls, we may want to also replicate, for
declarative services, the code of the called services as well as the
data that they use (see for instance Figure 3 for the services Op-
erativeSkiResorts and HotelsInfo). This allows the services to be
executed locally and further reduce the communication cost.

For the first two cases, namely replication of data and service
calls, the decision can be made based on the cost model described
in Section 3, comparing P ’s observable performance for the two
scenarios - replication vs. remote access. Things become more
complex when service definitions are replicated. One has to decide
(i) if and how to modify the service code to best fit the needs of P ,
(ii) which data the code uses, and how much of it to replicate, and
(iii) recursively, for which service calls appearing in this replicated
data, the code (and the data that it uses) should be also replicated.

We devote the rest of this section to this problem and explain how
points (i)-(iii) above can be solved. Note that the algorithm that we
propose makes its decisions by “simulating” candidate configura-
tions (computing their potential cost by using the what-if algorithm
of Figure 9). The actual replication is done only after all these costs
are compared, and the replication policy that will best improve the
observable performance of the given peer is chosen. This relates to
the fact that, especially when working in a decentralized P2P net-
work, a replication decision may not be beneficial to all the peers
at the same time.

The Replication Algorithm As explained above, when replicat-

ing an XQuery service to a given peer P , we need to identify the
(minimal) data that the service needs in order to run at P , replicate
it, and reformulate the service code so that it correctly exploits the
local data (this is a restricted case of XQuery rewriting to exploit
materialized views).

A naive strategy would be to replicate the whole documents that
the service implementation touches; in this case the modification
to the replicated service query code is minimal (only the document
names need to be changed to refer to the local replicated docu-
ments). However, this may not be feasible for storage limitation,
copyright or security reasons.

At the other extreme, we may completely evaluate the service
query at the original peer, copy the query results to the new peer,
and transform the replicated service into an identity query, that just
reads the result (as in many proposals of local query cache). The
disadvantage here is that this cached data needs to be refreshed
whenever the query result changes (see Section 2).

More refined alternatives consist of only partially evaluating the
service query at the original peer, replicating these partial results at
the new peer, and modifying the code of the replicated service to
evaluate the remaining part of the query on the partial results. If
the replicated data is ”self-maintainable”, as in our Colorado peer
example in Figure 3, this is the preferable solution.

This last approach is the one taken by our algorithm, depicted
in Figure 10. The algorithm takes as input the service implemen-
tation Q, the current configuration (data and services) at the peer
for which we try to improve observable performance by replica-
tion, and produces a new configuration for that peer. Note that the
modified service implementation Q�, which uses the local replicas
instead of the original documents referred by Q, is also part of the
new configuration of replicated data (the output by the algorithm).

For simplicity we assume that Q is unnested (by applying the
syntactic rules described in [21]). Q may include, perhaps in its
for, where or return clauses, several path expressions. For each such
path expression pe, over document doc, our algorithm attempts to
identify what is the minimal part from doc that needs to be repli-
cated to the new peer so that pe can be locally evaluated.

Let data traversed by pe denote the subtree of doc including
all the nodes touched by the evaluation of pe in the step-by-step
manner described in the XPath specification [31]. The principle of
our algorithm is the following.
(1) If the data traversed by pe contains no service call, then we
evaluate pe on doc and replicate at the new peer exactly the nodes
in the result. In this case, our replication strategy simply consists
of query result caching.
(2) If, on the contrary, data traversed by pe contains some ser-
vice calls, and furthermore, these service calls produce data that
may change the result of evaluating pe, then a different strategy is
needed, since caching would bring on the new peer an outdated re-
sult. Rather, the new peer should take the smallest replica that is
big enough to evolve by itself by means of service call activations.
On this replica, the copy of Q (including pe) will yield the same
results as if it ran over the original doc.

In both cases, the data to replicate may enclose other service
calls, for which another replication decision must be taken. The
algorithm examines recursively (lines 14-16) all the possible repli-
cation decisions that concern the service calls included to the data
previously committed for replication. For each of these service
calls, also, the other two possible ways of replication are possi-
ble. In particular, one may want to replace the service call with an
external link, or solely copy the service call without the service im-
plementation. For brevity, we do not show the other two choices in
the algorithm; they should be included in the recursive loops (line

Algorithm repDecision
Input: configuration conf , service implementation Q
Output: configuration conf �

1 conf � � conf , repData� �
2 foreach path expression pe over doc in Q
3 pe is of the form l��c���l��c��� � � � �lk
4 // evaluate pe by top-down navigation in doc:
5 foreach step j in the evaluation of pe, j � �� �� � � � � k
6 Q� � ���lj���lj��� � � � �lk
7 if exists fscjsc child of a node in the current node list,
8 sc is a call to a service sv, whose output type
9 may contain a path lj��� � � � �lkg
10 then repData� the set of subtrees
11 rooted at the current node list
12 conf � � conf � repData �Q�

13 if cost�conf �� � cost�conf�
14 then foreach sv� call of service in repData
15 conf � �repDecision(conf �, def�sv��)
16 endfor
17 break // stop here evaluation of pe
18 else nop;
19 else nop;
20 endfor // the evaluation of pe is over
21 if (empty (repData)) // repData has not yet been assigned
22 repData� the result of pe on doc
23 conf � � conf � repData
24 foreach sv� call of service in repData
25 conf � �repDecision(conf �, def�sv��)
26 endfor
27 endfor
28 return conf �

Figure 10: Service replication algorithm

14, 23). Our algorithm leaves to the service replica on the new peer
the task of combining the path expressions results into the complete
query result.

The algorithm takes into account the service arguments as fol-
lows: if they are values, they are used in the evaluation of the
replica as filters of the path expressions (line 3); if they are dynamic
documents that contain function calls, the algorithm is recursively
invoked on these function calls (lines 14, 23). Service arguments
are not represented explicitly in the algorithm for brevity.

Going back to the running example of Section 2, assume we want
to replicate the services OperativeSkiResorts(“Colorado”) and Ho-
telsInfo(“Colorado”,$resort), depicted in Figure 2, to the Colorado
peer. Running the above algorithm copies to the Colorado peer the
data and service replicas depicted in Figure 3.

The actual document replication is done using the replicate clause
of our XQuerydr language, as described in Section 2.2. Note that
the algorithm may decide to include in the new configuration some
data, which has already entirely or partially been copied in a previ-
ous running. In such a case, ID-based fusion, as in [26], is used to
unify common elements.

For the time being, we do not take into account possible updates
to the documents except for the updates enforced by services. Up-
dates can be viewed as special kinds of queries with side effects,
and expressed in XQuery-style query language [30]. Given this,
and the declarative nature of our XQuerydr replication language,
we believe that update propagation in the style of [14] can be em-
ployed in our context as well. This is left for future research.

6. RELATED WORK
Distribution of data have been extensively studied in the past, for

relational databases [6, 5], where the query language can be aware
or not of horizontal and vertical table fragmentation and of different
locations of table fragments. For the Web, data replication is a key
to performance and scalability [4]. To the best of our knowledge,

replication of dynamic documents has never been studied before.
Peer-to-peer systems have gained popularity for file sharing ap-

plications [11], and recently captured the attention of the database
community [32]. However, only recent work (e.g. PeerDB [23])
builds a query processing mechanism on top of a generic P2P sys-
tem. As explained in section 5, our replication and distribution sce-
nario requires a different query evaluation strategy than PeerDB’s.
Furthermore, we propose a dynamic replication mechanism to im-
prove each peer’s performance, which is not done in PeerDB. Hy-
brid system between query-shipping and data shipping has also
been studied before in the context of client-server databases [9].

[17] addresses query results caching for directory servers in LDAP.
Given a sequence of queries, they present algorithms to select ben-
eficial query templates whose results are put in the cache. ACE-
XQ [7] and [13] study semantic caching targeted to XQuery, which
may apply in a generic distributed context. The problem of caching
query results is also addressed in PeerOLAP [16] for OLAP queries.
As in [16], one of our goal is to save bandwidth costs. In our pro-
posal, replications is used to cache not only data, but also query
(and service call) relevant data and results. Moreover, we consider
the replication of services definitions (i.e. query definitions). To do
so, we provide (in Section 5) an algorithm that proposes cost-based
changes of the configuration of the dynamic XML documents.

XInclude [31] is a syntax for including external XML fragments
in XML documents, similar in principle to the one presented in
Section 2. Going further, we address peer-to-peer query processing
over distributed documents, and replication of dynamic XML doc-
uments. Moreover, as opposite to XInclude which stores external
edges at parents only, we allow them to be stored at both peers.

7. CONCLUSION AND FUTURE WORK
In this paper, we considered the new issues raised by the distri-

bution and replication of dynamic XML documents. We have pre-
sented a data model, close to the standard XML model, and suitable
extensions for XQuery. Based on these, we designed a cost-model
for a peer-to-peer context, and used it for efficient collaborative
query processing. Furthermore, we proposed a new query decom-
position strategy, for querying XML data in the presence of distri-
bution and replication.

The ideas presented in this paper were developed in the context
of the Active XML peer to peer system [1, 3, 22], and are currently
being implemented and integrated into the system. Active XML al-
ready supports dynamic (Active) XML documents and remote in-
vocation of service calls. We are extending it with external links
and with distributed query processing capabilities. Among the per-
spectives of our work, we plan to experiment with our architecture
and cost model on mobile peers, in the framework of an industry
and research project that we are currently involved in.

8. REFERENCES
[1] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and

R. Weber. Active XML: Peer-to-Peer Data and Web Services
Integration (demo). Proc. of VLDB, 2002.

[2] A. Aboulnaga, A. Alameldeen, and J. Naughton. Estimating
the selectivity of XML path expressions for internet scale
applications. In The VLDB Journal, pages 591–600, 2001.

[3] Active xml. http://www-
rocq.inria.fr/verso/Gemo/Projects/axml/.

[4] The Akamai webpage. http://www.akamai.com/.
[5] Peter M. G. Apers. Data allocation in distributed database

systems. TODS, 13(3):263–304, 1988.

[6] S. Ceri and G. Pelagatti. Distributed Databases - Principles
and Systems. McGraw-Hill Inc., 1984.

[7] L. Chen and E. A. Rudensteiner. ACE-XQ: A CachE-aware
XQuery Answering System. In Proc. of WebDB, 2002.

[8] Microsoft .Net. http://www.microsoft.com/net/.
[9] Michael J. Franklin, Björn Thór Jónsson, and Donald

Kossmann. Performance tradeoffs for client-server query
processing. In SIGMOD, 1996.

[10] J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Simeon.
StatiX: Making XML count. In SIGMOD, 2002.

[11] Gnutella homepage. http://www.gnutella.com/.
[12] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for

processing XPath queries. In Proc. of VLDB, 2002.
[13] V. Hristidis and M. Petropoulos. Semantic caching of XML

databases. In Proc. of WebDB, 2002.
[14] J. Mc Hugh, S. Abiteboul, R. Goldman, D. Quass, and

J. Widom. Lore: A Database Management System for
Semistructured Data. Technical report, Stanford University
Database Group, Feb 1997.

[15] Sun’s JavaServer Pages.
http://java.sun.com/products/jsp/.

[16] P. Kalnis, W.S. Ng, B. C. Ooi, D. Papadias, and K.L. Tan. An
Adaptive Peer-to-Peer Network for Distributed Caching of
OLAP Results. In Proc. of ACM SIGMOD, 2002.

[17] O. Kapitskaia, R. Ng, and D. Srivastava. Evolution and
revolutions in LDAP directory caches. In EDBT, 2000.

[18] A. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel.
The IceCube approach to the reconciliation of divergent
replicas. In Proc. of ACM PODC, 2001.

[19] D. Kossmann. The state of the art in distributed query
processing. ACM Computing Surveys, 32(4), 2000.

[20] Macromedia Dreamweaver.
http://www.macromedia.com/.

[21] I. Manolescu, D. Florescu, and D. Kossmann. Answering
XML queries over heterogeneous data sources. In Proc. of
VLDB, 2001.

[22] Tova Milo, Serge Abiteboul, Bernd Amann, Omar
Benjelloun, and Fred Dang Ngoc. Exchanging intensional
xml documents. In Proc. of ACM SIGMOD, 2003.

[23] Wee Siong Ng, Beng Chin Ooi, Kian Lee Tan, and AoYing
Zhou. PeerDB: A P2P-based system for distributed data
sharing. In Proc. of ICDE, 2003.

[24] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: looking
forward. Int’l Workshop on XML data management, 2002.

[25] V. Papadimos and D. Maier. Mutant query plans. In
OOPSLA, 2001.

[26] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina.
Object Fusion in Mediator Systems. In Proc. of VLDB, 1996.

[27] PHP. http://www.php.net/.
[28] J. Shanmugasundaram, E. Shekita, and R. Barr. Efficiently

publishing XML views of relational databases. In Proc. of
VLDB, 2000.

[29] T. Ozsu and P. Valduriez. Principles of Distributed Database
Systems, 2nd Edition. Prentice-Hall, 1999.

[30] I. Tatarinov, Z. Ives, A. Levy, and D. Weld. Updating XML.
In Proc. of ACM SIGMOD, 2001.

[31] The World Wide Web Consortium (W3C).
http://www.w3.org/.

[32] B. Yang and H. Garcia-Molina. Comparing hybrid
peer-to-peer systems. In VLDB, pages 561–570, 2001.

