
A dynamic warehouse for XML data of the Web

Lucie Xyleme�

March 2001

Abstract

Xyleme is a dynamic warehouse for XML data of the Web supporting query evaluation,
change control and data integration. We briefly present our motivations, the general architecture
and some aspects of Xyleme. The project we describe here was completed at the end of 2000.
A prototype has been implemented. This prototype is now being turned into a product by a
start-up company also called Xyleme [14].

Xyleme: a complex tissue of wood cells, functions in conduction and storage ...

1 Introduction et motivation

The current development of the Web and the generalization of XML technology [13] provides a
major opportunity which can radically change the face of the Web. We have developed a prototype
of adynamic warehouse for XML data of the Web, namely Xyleme. In the present paper, we briefly
present our motivations, Xyleme’s general architecture and its main aspects.

The Web is huge and keeps growing at a healthy pace. Most of the data is unstructured, con-
sisting of text (essentially HTML) and images. Some is structured, mostly stored in relational
databases. All this data constitutes the largest body of information accessible to any individual in
the history of humanity. The lack of structure and the distribution of data seriously limit access
to the information. To provide functionalities beyond full-text searching ala Alta Vista or Google,
specific applications are being built that require heavy investments. A major evolution is occurring
that will dramatically simplify the task of developing such applications:

XML is coming!

XML is a standard to exchange semistructured data [1] over the Web. It is widely adopted. It is
clear that progressively more and more Web data will be in XML form and that DTDs, or XML
Schemas will be available to describe it, see, e.g., Biztalk and Oasis. Communities (scientific,
business, others) are defining their own DTDs to provide for standard representations of data in
specific areas. Given this, we decided to study and build adynamic Warehouse for massive volume
of XML datafrom the Web. The number of accessible XML pages is marginal for the moment,

�Lucie Xyleme is a nickname for a large group of people who worked on the project: S. Abiteboul, V. Aguilera,
S. Ailleret, B. Amann, F. Arambarri, S. Cluet, G. Cobena, G. Corona, G. Ferran, A. Galland, M. Hascoet, C-C. Kanne,
B. Koechlin, D. Le Niniven, A. Marian, L. Mignet, G. Moerkotte, B. Nguyen, M. Preda, M-C. Rousset, M. Sebag,
J-P. Sirot, P. Veltri, D. Vodislav, F. Watez and T. Westmann.

1

less that 1% of the number of HTML pages. However, we believe that this number will grow very
rapidly soon. Thus we want a warehouse capable of storing huge volumes of pages and a major
issue isscalability. The problems we address are typical warehousing problems such as change
control or data integration. They acquire in the Web context a truly distinct flavor. More precisely,
the research directions we studied and that we briefly discuss here are as follows:

� efficient storagefor huge quantities of XML data (hundreds of millions of pages).

� query processingwith indexing at the element level for such a heavy load of pages.

� data acquisition strategiesto build the repository and keep it up-to-date.

� change controlwith services such as query subscription.

� semantic data integrationto free users from having to deal with many specific DTDs when
expressing queries.

These goals are technically very challenging. To handle such a volume of data (terabytes) and
workload, we rely on parallelism. More precisely, we are distributing data and processing on a local
network of Linux PCs.

Certain functionalities of Xyleme are standard and are or will soon be found in many systems.
For instance, from a query viewpoint, search engines will certainly take advantage of XML structure
to provide (like Xyleme) attribute-equal-value search and some will certainly support XML query
languages. Other features such as change monitoring are already provided (to some extent) by
systems, e.g., MindIt [10]. What is specific to Xyleme? Perhaps, the main distinguishing feature is
thatXyleme is based on warehousing. The advantages of such an approach may best be illustrated by
a couple of examples. First, consider query processing. Certain queries requiring joins over pages
distributed over the Web are simply not conceivable in the current Internet context, for performance
reasons. They become feasible with a warehousing approach. To see another example, consider
monitoring. It is trivial to notify users when some pages of interest change. Now, if the pages are
warehoused, one can support more precise alerts, e.g., when some particular elements change. More
examples of new services supported by Xyleme will be encountered in the paper.

The Xyleme Project functioned as an open, loosely coupled network of researchers. Serge
Abiteboul, Sophie Cluet (INRIA researchers) and F. Bancilhon (CEO of Ariso) initiated the project.
Xyleme was rapidly joined by researchers from the database groups from INRIA-Rocquencourt
(http://www-rocq.inria.fr/verso/), Mannheim U. (http://pi3.informatik.uni-mannheim.de/
mitarbeiter.html), the CNAM-Paris (http://sikkim.cnam.fr/), the IASI Team of University of Paris-
Orsay (http://www.lri.fr/iasi/introduction.fr.html), and a few individuals from other places. The
project we describe here was completed at the end of 2000. A prototype has been implemented.
This prototype is now being turned into a product by a start-up company also called Xyleme [14].

The paper is a short survey. We provide references to some longer reports describing specific
aspects of the work. References for related works may be found there. The paper is organized as
follows. Section 2 introduces the architecture. The repository is discussed in Section 3. Section 4
deals with query processing and indexing. Data acquisition is considered in Section 5 and change
control in Section 6. The topic of Section 7 is data integration.

2

 compilation

Query exec Query exec Query exec

Query exec Query exec

Client Client Client ClientClient

Change
Semantics
Global Query

Interface
Web Interface
Crawler
Global Loader

INTERNET

E
T
H
E
R
N
E
T

Index

Change
Semantics

Interface

Query

Index Index

REPOSITORY REPOSITORY

Loader

Version

Loader

Version

Figure 1: Architecture

2 The Architecture

In this section, we present the architecture of the system.
The system is functionally organized in four levels: (i) physical level (the Natix repository tai-

lored for tree-data and an index manager); (ii) logical level (data acquisition and query processing);
(iii) application level (change management and semantic data integration); (iv) interface level (in-
terface to the web and interface with Xyleme clients). As already mentioned, the system runs on a
network of Linux PCs. All modules are written in C++ and communicate using Corba. The Xyleme
clients run on standard Web browsers using Java applets. As shown in Figure 1, we (logically)
distinguish between several kinds of machines. This aspect will be ignored here.

3 The Repository

In this section, we discuss the repository. More details may be found in [6].
Xyleme requires the use of an efficient, update-able storage of XML data. This is an excellent

match for Natix developed at the U. of Mannheim. Typically, two approaches have been used
for storing such data: (i) store XML pages as byte streams or (ii) store the data/DOM tree in a
conventional DBMS. The first presents the disadvantages that it privileges a certain granularity
for data access and requires parsing to obtain the structure. The second artificially creates lots of
tuples/objects for even medium-size documents and this together with the effect of poor clustering
and the additional layers of a DBMS tend to slow down processing. Natix uses ahybrid approach.
Data are stored as trees until a certain depth where byte streams are used. Furthermore, some

3

1 2 3 4 5 6 7 9

1 2 3

4 5 6

8 9

8 p7

10

10

7

h1

h1’

h2

h2’

Figure 2: Distributing nodes on records

minimum structure is used in the “flat” part to facilitate access with flexible levels of granularity,
Also, Natix offers very flexible means of choosing the border between the object and flat worlds.

Natix is built, in a standard manner, on top of a record manager with fixed-size pages and
segments (sequences of pages). Standard functionalities for record management (e.g., buffering) or
fast access (e.g., indexes) are provided by Natix. One interesting aspect of the system is the splitting
of XML trees into pages. An example is shown in Figure 2. Observe the use of “proxy” nodes
(p-nodes) and “aggregate” nodes (h-nodes). One can control the behavior of the split by specifying
at the DTD level, which splits are not allowed, are forced, or are left to the responsibility of the
system.

The performances of Xyleme heavily depend on the efficiency of the repository. We believe that,
by taking advantage of the particularities of the data, Natix does offer appropriate performances.

4 Query Processing

In this section, we consider processing of static queries. Change queries are studied in Section 6. A
more detailed presentation of this work can be found in [2].

The evaluation of structured queries over loosely structured data such as XML has been exten-
sively studied during the last ten years. The techniques differ slightly depending on the system that
is used to store the data, object-oriented, dedicated or relational. However, none of the existing ap-
proaches scale to the Web. We are considering here billions of documents (Google recently indexed
more than one billion HTML documents) and millions of queries per day. So, query processing
acquires in Xyleme a truly distinct flavor.

As is often the case, we represent queries using an algebra. The novelty of our approach lies
in (i) a distribution pattern that scales to the Web (see Figure 1) (ii) the efficient implementation of
a complex algebraic operator, namedPatternScan, that captures so-called tree queries, i.e., queries
that filter collections of documents according to some tree pattern and extract information from the
selected documents. We capture the added expressive power provided by database-like XML query
languages using standard operators (e.g.,Join, Map, etc.).

ThePatternscanoperation is implemented using an index mechanism, namedXyIndex, that is
an extension of the full text index (FTI) technology. Whereas a standard FTI returns the documents

4

in which a word occurs, aXyIndexadds annotations to position each occurrence of a word within
a document relatively to the other words. Also, aXyIndexrespects an order relation that allows to
use efficient and pipelinable merge algorithms to combine the various sets of words occurrences
corresponding to a tree query.

As will be explained in Section 7, Xyleme partitions documents into clusters of documents, each
corresponding to a domain of interest (e.g.,tourism, finance, etc.). Also, Xyleme providesa view
mechanism, that enables the user to query a single structure summarizing a cluster rather than the
many heterogeneous DTDs it contains.

A view in a relational system builds one relation by combining information coming from others.
Similarly, a view in Xyleme combines several clusters into a virtual one. However, whereas the tu-
ples of a relation share a common type, a cluster is a collection of highly heterogeneous documents.
Thus, a view cannot be defined by one relatively simple join query between two or three collections
but rather by the union of many queries over different sub-clusters (Section 7 explains how views are
(semi-)automatically generated by the system). As a matter of fact, there is noa priori limit to the
size of a view definition in Xyleme since it depends on the number of DTDs (that may be implicit
in documents that are only well-formed) that one can find on the Web. Obviously, techniques that
are used to maintain and query relational views have to be seriously re-considered to fit Xyleme’s
needs.

The view information in Xyleme is decomposed into two parts corresponding to the standard
query processing steps: compilation and execution. The compilation part of a view is replicated
on each upper-level machine (see Figure 1) and is mainly used to understand which index and
repository machines are concerned by a query [4]. The size of this information is usually small,
depending on the number of domains and the size of the view schema. The execution part of a view
is distributed over the index machines (see Figure 1). Each stores only the view information that
concerns its indexed cluster (or sub-cluster). This data is used to translate tree-queries just before
they are evaluated by XyIndexes and is order of magnitude smaller that the indexes.

5 Data Acquisition

In this section, we consider the issue of data acquisition. More details may be found in [9].
Wecrawl the Web in search of XML data. We also need to refresh pages to keep the repository

up to date. We implemented a crawler that can read millions of pages per day. Several crawlers
can be used simultaneously to share the acquisition work. Note that we store only XML pages. For
HTML, we read them to discover new links. A critical issue is the strategy to decide which docu-
ment to read/refresh next. First, a Xyleme administrator is able to specify some general acquisition
policies, e.g., whether it is more urgent to explore new branches of the Web or to refresh the docu-
ments we already have. The system then cycles around all pages it knows of (already read or not)
deciding for each page whether this page has to be refreshed/read during this particular cycle. The
decision for each page is based on theminimization of a global cost function under some constraint.
The constraint is the average number of pages that Xyleme is willing to read per time period. The
cost function is defined as the dissatisfaction of users being presented stale data. More precisely, it
is based on criteria such as:

� Subscription and Publication:A customer may specify a desired refresh frequency for some
particular documents. Also, some query subscription may request the regular refreshing of

5

some pages. Finally, the owner of a document may let Xyleme know when a change occurs
and request a refresh of the warehouse for this document.

� Temporal informationsuch as last-time-read or change rate: These allow to estimate the
number of updates that were missed for a particular page.

� Page importance: We want to read in priority documents that, we believe, are important and
refresh them more often than others. To estimate page importance, we use the structure of the
Web and the intuition that important pages carry their importance to pages they point to. This
leads to a fixpoint computation.

Note that each page that is known by Xyleme is eventually read/refreshed (no eternal starvation)
unless there is an explicit decision by the administrator to leave a portion of the Web out, e.g., pages
below a certain importance threshold. Finally, observe that page importance can also be used to
rank pages in query results as done, e.g., in Google.

6 Change Control

In this section, we discuss change control. Users are often not only interested in the current values
of documents but also in their evolution. They want to see changes as information that can be
consulted or queried. Indeed, change detection and notification is becoming an important part of
Web services.

The first aspect of change control we considered is a subscription mechanism [11]. At the
time we load or refresh a document, we detect whether it verifies patterns specified by some sub-
scriptions. Examples of changes that can be monitored include, for instance, a modification of a
particular document, the discovery of new documents with a given DTD. We also support mon-
itoring conditions at the element level, e.g., monitoring of the newly discovered documents with
an element taggedaddresscontaining the word “Marseille”. The monitoring system we developed
allows to monitor, on a single PC, the loading of millions of documents per day, with millions of
subscriptions.

The second aspect of change control we considered is a versioning mechanism [8]. For each
page, Xyleme gets snapshots of the page. It is possible to version some pages. To represent versions,
we opted for achange-centricapproach as opposed to a data-centric one that is more natural for
database versioning. We use a representation based ondeltasin the style of Hull’s deltas. Given
two consecutive versions of a page, we compute the delta using a very efficientdiff algorithm we
developed, tailored to our needs [5]. As often done in physical logs, we usecompleted deltasthat
also contain additional information so the deltas can be reversed and composed. We also assign
persistent identifiers that we call Xyleme IDs (XIDs) to the elements of the documents. These
identifiers are essential to represent and control changes. One of the roles of thediff is to assign
XIDs to elements in consecutive versions of a document. An example of our logical representation
of versions is shown in Figure 3. In the figure, XIDs are shown in the XML tree although in reality,
they do not exist inside the document but only in an auxiliary structure, the XID-Map. Note that a
delta is also an XML document and thus, that it can be queried like any XML document.

We use deltas for versioning documents. We believe they can also be very useful to version
results of continuous queries, i.e., queries that are evaluated regularly as in the Conquer [7] or
Niagara [3] projects. Deltas may be used for other services as well; see [8].

6

...

XID-map:1-3;8-10;4-7||11

unit delta

PN
500

8

tree oldnew
pospos

4 7 27 10 7 2 50

PN

Pr
13

11

delete

from to

time...

234 235

delta

unit delta

updateupdatemove

parent parent xidnew

1

N P
4

N P
1 2

Pr
10

Pr
6

Pr
3

TV 50 Nikon
Camera

Version 235

VCR 100
9 5

catalog 7

old
value

new
valuexidold

value
new

valuexidold
posparent

100 1501005

DVD 500
12

Figure 3: Storage of a versioned document

7 Semantic Data Integration

In this section, we address the issue of providing some form of semantic data integration in Xyleme.
More details may be found in [12].

Queries are precise in Xyleme because, as opposed to keywords searches, they are formulated
using the structure of the documents. In some areas, people are defining standard documents types
or DTDs, but most companies publishing in XML often have their own. Thus, a modest question
may involve hundreds of different types. Since, we cannot expect users to know them all, Xyleme
providesa view mechanism, that enables the user to query a single structure, that summarizes a
domain of interest, instead of many heterogeneous schemata.

Views can be defined by some database administrator. However, this would be a tedious and
never ending task. Also, metadata languages such as RDF may be used by the designer of the DTD
or by domain experts to provide extra knowledge of a particular DTD. We believe that this will
become common in the long range. However, for now, the field is too young, standards are missing
and such knowledge is not available. Thus, we studied how to automatically extract it using natural
language and machine learning techniques.

The first task is to classify DTDs into domains (e.g.,tourism, finance) based on a statistical
analysis of the similarities between the words found in different DTDs and/or documents. Similarity
is defined based on ontologies or thesauri such as Wordnet.

Once anabstract DTDhas been defined to structure a particular domain, the next task is to gen-
erate the semantic connections between elements in the abstract DTD and elements in concrete ones.
Each element is identified by a path from the root of its DTD (e.g.,hotel/address/city). The problem
is then to map paths to paths. Obviously, all tags along a path (i) are not always words and (ii) do
not have the same importance. Concerning (i), we use standard natural language techniques (e.g., to
recognize abbreviations or composite words) and a thesaurus. As for (ii), we mainly rely on human
interaction. Notably, the abstract DTD designer can indicate to the mappings generator that some

7

tag is not particularly meaningful in a path, or, on the contrary essential. For instance, if we con-
siderhotel/address/city, we can imagine thathotel is meaningful butaddress not that much. In this
fashion, we will be able to mapauberge/townto hotel/address/city, but notcompany/address/city.

Conclusion Working in the Xyleme Project was a fascinating experience. Many problems were
encountered that still require to be further investigated. The work is of course continuing in the
various research groups and in the Xyleme start-up.

Acknowledgments: We want to thank those who discussed many aspects of this work with us or
those, in particular within INRIA’s management, who supported us.

References

[1] Serge Abiteboul, Peter Buneman, and Dan Suciu.Data on the Web. Morgan Kaufmann, California,
2000.

[2] Vincent Aguilera, Sophie Cluet, Pierangelo Veltri, and Fanny Watez. Querying XML documents in
xyleme.ACM SIGIR Workshop on XML and information retrieval, 2000.

[3] Jianjun Chen, David DeWitt, Fend Tian, and Yuan Wang. Niagaracq: A scalable continous query system
for the internet databases.ACM SIGMOD, page 379, 2000.

[4] Sophie Cluet, Pierangelo Veltri, and Dan Vodislav. Views in a large scale xml repository. InVLDB’01,
2001.

[5] Grégory Cobéna, Serge Abiteboul, and Am´elie Marian. Detecting changes in XML documents. Tech-
nical report, Verso Group, INRIA-Rocquencourt, 2001.http://www-rocq.inria.fr/verso/ .

[6] Carl-Christian Kanne and Guido Moerkotte. Efficient storage of XML data. Technical Report 8/99,
University of Mannheim, 1999.http://pi3.informatik.uni-mannheim.de/ .

[7] Ling Liu, Calton Pu, Wei Tang, and Wei Han. Conquer: A continual query system for update monitoring
in the www. International Journal of Computer Systems, Science and Engineering, 2000.

[8] Amélie Marian, Serge Abiteboul, Gr´egory Cobéna, and Laurent Mignet. Change-centric management
of versions in an XML warehouse, September 2001. VLDB’01.

[9] Laurent Mignet, Mihai Preda, Serge Abiteboul, S´ebastien Ailleret, Bernd Amann, and Am´elie Marian.
Acquiring XML pages for a webhouse, October 2000. BDA’00.

[10] Mind-it web page. http://mindit.netmind.com/.

[11] Benjamin Nguyen, Serge Abiteboul, Gregory Cobena, and Mihai Preda. Monitoring XML data on the
web. InACM Sigmod, 2001.

[12] C. Reynaud, J.P. Sirot, and D. Vodislav. Semantic integration of xml heterogeneous data sources. In
International Database Engineering and Applications Symposium, IDEAS, 2001.

[13] World Wide Web Consortium pages. http://www.w3.org/.

[14] Xyleme Home Page. http://www.xyleme.com/.

8

