
Monitoring XML Data on the Web

Benjamin Nguyen, Serge Abiteboul, Grégory Cobena Mihaï Preda
INRIA Xyleme S.A.

Domaine de Voluceau BP 105 6 rue Émile Verhaeren
78153 Le Chesnay Cedex 92210 St.Cloud

FRANCE FRANCE
� firstname � . � lastname � @inria.fr mihai.preda@xyleme.com

ABSTRACT
We consider the monitoring of a flow of incoming documents. More
precisely, we present here the monitoring used in a very large ware-
house built from XML documents found on the web. The flow
of documents consists in XML pages (that are warehoused) and
HTML pages (that are not). Our contributions are the following:

� a subscription language which specifies the monitoring of
pages when fetched, the periodical evaluation of continuous
queries and the production of XML reports.

� the description of the architecture of the system we imple-
mented that makes it possible to monitor a flow of millions
of pages per day with millions of subscriptions on a single
PC, and scales up by using more machines.

� a new algorithm for processing alerts that can be used in a
wider context.

We support monitoring at the page level (e.g., discovery of a new
page within a certain semantic domain) as well as at the element
level (e.g., insertion of a new electronic product in a catalog).

This work is part of the Xyleme system. Xyleme is developed
on a cluster of PCs under Linux with Corba communications. The
part of the system described in this paper has been implemented.
We mention first experiments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD 2001 May 21-24, Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00.

Strange fascination, fascinating me
Changes are taking the pace I’m going through.
Turn and face the strange
Ch..ch..changes.

David Bowie, Changes

1. INTRODUCTION
The web constitutes the largest body of information accessible to

any individual throughout the history of humanity and keeps grow-
ing at a healthy pace [4]. Most of it is unstructured, and heteroge-
neous. A major evolution is occurring that will dramatically sim-
plify the task of developing applications with this data, the coming
of XML [1, 28, 27, 18]. XML is still in its infancy and the num-
ber of XML pages found on the web is modest (although growing
very fast). What was once only a huge collection of documents is
turning into a massive database. In this paper, we study the follow-
ing problem : monitoring for a very large dynamic warehouse built
from XML documents found on the web.

Web users are often concerned by changes in pages they are in-
terested in. The present work has been developed in the context of
Xyleme [31], a dynamic XML warehouse for the web. We moni-
tor the flow of documents that are discovered and refreshed by the
system. The monitoring of a large database is a typical warehous-
ing problems [30]. However, a basic distinction is that since we
do not control the (external) web sites, we have to detect changes
at the time we are fetching the pages. For HTML pages, we have
their signature and we can only detect whether they have changed
or not. For XML, we also monitor changes at the element level,
e.g., a new product has been introduced in a catalog.

A first contribution of the paper is a subscription language based
on two somewhat complementary ways of observing changes, namely:

1. Change monitoring that consists in filtering the flow of doc-
uments acquired by the system to detect changes that may
interest certain users based on specifications of these users’
subscriptions.

2. Continuous queries that consist in regularly asking the same
query of interest over the entire warehouse.

The subscription language we propose is tailored to XML and HTML
and offers the possibility to specify complex monitoring and con-
tinuous queries with interactions between them. It also provides
means of specifying the nature and time of delivery of subscription
reports.

Another contribution of the paper is the presentation of the gen-
eral architecture of our subscription system. A major issue in this
context is scalability. Indeed, most of the problems we consider

here would be relatively easy at the level of an intranet. This is not
the case when confronted with the sheer size and complexity of the
web. Our monitoring system is designed (and has been tested) to
monitor the fetching of millions of XML and HTML documents
per day, while supporting millions of subscriptions. The Xyleme
system, and in particular, the subscription system we describe here,
have been implemented and tested.

The core of the monitoring system consists in (what we call)
the monitoring query processor that receives the alerts detected for
each document and tests whether they correspond to one or more
subscriptions. Towards this end, we propose a new algorithm. We
would like to stress that this part of the system can be used in a
much larger setting. In general terms, each alert consists of a set
of atomic events and the problem can be stated as finding in a flow
of sets of atomic events, the sets that satisfy a conjunction of prop-
erties. Our algorithm was designed to support a flow of millions
of alerts per day and millions of such conjunctions. Preliminary
measures show that indeed it does so.

Related works A lot of works in databases involving time is about
versioning data [7, 6, 17]. Although we do have a versioning mech-
anism in the Xyleme system, this is not the topic of the present pa-
per. Temporal query languages have also been extensively studied
[25]. In particular, a temporal query language on XML-like data is
described in [6]. Our subscription language can also be viewed as
a temporal query language, although a particular one because of its
focus on changes.

Some of the techniques we use originate from active databases
[29]. A main distinction is that we are not directly aware of the
changes of data on the web. This modifies somewhat the issues and
introduces real challenges in terms of fast reaction to changes [12].

Continuous query system have recently triggered a lot of inter-
est. For instance, The Conquer system [16, 9, 15] can run SQL-like
queries on a given HTML document. Like ours, their system pro-
vides email notification. However, building a complex SQL-like
query with Conquer requires having a solid knowledge of the web
page that is being monitored. The factorization of database triggers
is studied in [13]. The optimization of XML continuous queries is
studied in [8, 22]. These works are to some extent complementary
to ours and we intend to introduce in our system optimizations in
their style.

It should be pointed that change monitoring is becoming very
popular on the web. For instance, NetMind [20] offers change mon-
itoring on HTML web pages that you submit, and notifies you via
email. Some search engines (e.g., Northern Light [23]) also pro-
vide such functionalities. Compared to such systems, our main ad-
vantage is that because of XML, we can support more elaborate a
subscription language with monitoring at the element level. In ab-
sence of information, we cannot really compare our performance
to theirs on more basic subscriptions.

Organization The paper is organized as follows. In Section 2, we
present a quick review of the subscription system’s functionalities.
Then we give in Section 3 a general overview of the architecture. In
Section 4, we discuss the Monitoring Query Processor that forms
the core of the system, and in particular the algorithm it is based
on. Then, we describe the parts that are specific to the application,
the subscription language in Section 5 and the alerters in Section 6.
The last section is a conclusion.

2. MOTIVATIONS
In this section, we explain the general motivations of our system,

spiced up by examples.

2.1 The Xyleme system, in brief

Crawler

Acquisition
& Refresh Loader

Semantic
View

Repository and Index Manager

Control
Change

Query
Processor

Figure 1: Xyleme Functional Architecture

A complete description of the Xyleme system is beyond the scope
of the present paper. We only give here a brief and partial descrip-
tion of the main functionalities of the system. The main modules
are shown in Figure 1. The lowest layer consists of the XML repos-
itory and index manager. The repository, called Natix, being devel-
oped at Mannheim University, is tailored for storing tree-data [21],
e.g., XML pages. Above the repository, on the left hand side, are
the three modules in charge of populating and updating the XML
warehouse. Since the functionalities of both crawler and loader
should be obvious, let us just say a few words about the data ac-
quisition and refresh module [17, 19]. Its task is to decide when to
(re)read an XML or HTML document. This decision is based on
criteria such as the importance of a document, its estimated change
rate or subscriptions involving this particular document. On the
right-hand side, we find the query processor [2] that is an XML-
tailored query processor that supports our own XML query lan-
guage in the absence of a standard for the moment. Above it are
the change control and semantic modules. The main role of the se-
mantic module is to classify all the XML resources into semantic
domains and provide an integrated view of each domain based on a
single abstract DTD for this domain. The change control module
is the topic of the present paper, and will be detailed further.

Xyleme runs on a cluster of Linux PCs [24]. All modules and
in particular the XML loaders and the indexers are distributed be-
tween several machines. The repository itself is distributed. Data
distribution is based on an automatic semantic classification of all
DTDs. The system tries to cluster as many documents as possible
from the same domain on a single machine. The entire system is
written in C++ and uses Corba [10] for internal communication and
HTTP for external ones.

2.2 Monitoring
The subscription language will be detailed in Section 5. The role

of this section is to give a flavor of the possibilities of the system
and thereby motivate the work.

Web users are not only interested in the current values of docu-
ments. They are often interested in their evolution. They want to
be notified of certain changes to the web. They also want to see
changes presented as information that can be consulted or queried.
There are two main components in the control of changes in such a
system:

� Monitoring queries: Changes to a page are discovered when
the system reads the page. The available information consists
of the new page, some meta-data such as its type or the last
date of update and eventually the signature of the old page or
the old page itself (if the page is warehoused).

� Continuous queries: Changes may also be discovered by reg-
ularly asking the same query and discovering changes in the
answer. In that sense, the versioning of query answers (not
detailed here) is an important aspect of a change control sys-
tem.

A subscription consists of a certain number of monitoring queries
and continuous queries. Let us consider more precisely monitoring
first. The Xyleme system reads a stream of web pages. We can
abstractly view this stream as an infinite list of documents: ��������	��
��

, i.e., the list of pages fetched by Xyleme in the order they
are fetched. The main task that is set before the change monitoring
system is to find, for each document entering the system, if there
is a monitoring query interested in this document. If this is the
case, the monitoring system produces a notification that consists
of the code of the monitoring query and some relevant information
about the particular document. Thus, each monitoring query can
be viewed as a filtering over the list � of documents. It produces a
stream of notifications.

The role of continuous queries is different. Each continuous
query is regularly evaluated. Thus the continuous query proces-
sor produces a stream of pairs consisting of the code of a query
together with the result of the evaluation of this query. By analogy,
we also call such a pair, a notification, as shown in figure 2. When
a particular condition holds, the current value of this stream of no-
tifications is used to produce a (subscription) report using a report
query.

There is a last component in the specification of a subscription,
namely refresh statements. A refresh statement gives the means to
a user to explicitly specify that some page or a set of pages has to
be read regularly, i.e., to influence the crawling strategy. We have
not yet implemented this part of subscriptions and will not discuss
it much in the paper. We mention it here for completeness. In
our current implementation, subscriptions influence the refreshing
of pages only by adding importance to the pages they explicitly
mention [19]. Such pages will be read more often.

Thus, a subscription more precisely consists of (see Figure 2):

1. zero or more monitoring queries over the input stream that
filter the stream of documents and produce notifications that
feed the unique notification stream.

2. zero or more continuous queries over the warehouse that also
feed the notification stream. Each continuous query comes
with a condition to specify when to issue the query, i.e., a
frequency (e.g., weekly) or a particular notification.

3. refresh statements that indicate, for instance, that pages for a
particular site should be visited at least weekly.

4. an indication, called the report condition that specifies when
to produce a report and a query, called report query, over the
notification stream that produces the subscription report that
is (for instance) emailed to the subscribers.

To illustrate, an example of a simple subscription using our sub-
scription language is as follows:

subscription MyXyleme

monitoring
select <UpdatedPage url=URL/>
where URL extends ‘‘http://inria.fr/Xy/’’

and modified self

monitoring

Query

condition

Report
Query

Notification
Report

condition

Query
Monitoring

Continuous

when

alert

report

Figure 2: Main Components of the Subscription System

select X
from self//Member X
where URL = ‘‘http://inria.fr/Xy/members.xml’’

and new X

continuous ReferenceXyleme
% a query Q that computes, e.g., the list of
% sites that reference Xyleme
try biweekly

refresh ‘‘http://inria.fr/Xy/members.xml’’ weekly

report
% an XML query Q’ on the ouput stream
...
when notifications.count > 100

This subscription will monitor the set of URLs with a certain
prefix that are found to have been modified (since the last fetch) and
the new elements of tag Member in a particular XML document.
It also requests to evaluate query (omitted here) biweekly. All
the resulting notifications are (logically) bufferized until the report
condition becomes true, i.e., until more than 100 notifications are
gathered. Once this is the case, a reporting query over all the data
gathered so far is issued. The reporting query (also omitted here)
may, for instance, remove duplicates URL’s of pages that have been
found updated several times.

For instance, the previous subscription could return:

<Report>
<UpdatedPage url=‘‘http://inria.fr/Xy/index.html’’/>
<UpdatedPage url=‘‘http://inria.fr/Xy/members.xml’’/>
<Member><name>jouglet</name><fn>jeremie</fn></Member>
<Member><name>nguyen</name><fn>benjamin</fn></Member>
<Member><name>preda</name><fn>mihai</fn></Member>

...
<ReferenceXyleme>
<site url=‘‘http://www.yahoo.com’’>
<site url=‘‘http://www.amazone.com’’>
...
</ReferenceXyleme>
</Report>

3. THE SUBSCRIPTION SYSTEM
In this section, we present the general architecture of the sub-

scription system shown in Figure 3. This architecture can be broken
down into two groups of modules.

� Some generic modules that can be used in a more general set-
ting of change control. These are the Monitoring Query Pro-
cessor, the Subscription Manager, the Trigger Engine, and
the Reporter.

Trigger

Engine

Subscription
Manager

timer

SQL
DB

Web Browser

Web Server

SQL
DB

Alerter

XYZ

Processor
Query

Reporter
XYZ
Reporter

XYZ
Subscription
Manager

Monitoring
Query
Processor

XYZ

Figure 3: Architecture for the subscription system

� Some application specific modules that are dedicated to the
control of change in the Xyleme environment. These include
the specific Alerters we are using, the Xyleme Query Proces-
sor, and some modules to input subscriptions (Xyleme Sub-
scription Manager) and send results (Xyleme Reporter).

In the figure, the dotted lines are used for the flow of commands
and the filled lines for the dataflow. The generic part of the system
is within the thick line rectangle.
The global system For each document, the Alerters detect the set
of atomic events of interest. If the set is nonempty, an alert is sent
to the Monitoring Query Processor that consists of the set of atomic
events detected together with the requested data. The Monitoring
Query Processor determines whether some subscriptions are con-
cerned with these alerts or whether they should trigger some par-
ticular processing. For instance, the Trigger Engine may start the
evaluation of a query. Notifications coming from the Monitoring
Query Processor (for monitoring queries) or the Trigger Engine (for
continuous queries) are sent to the Reporter. When some condition
holds, the Reporter sends the set of notifications received so far,
an XML document, to the Xyleme Reporter that post-processes it
by applying an XML query to it. This produces a report that is ei-
ther sent by email, or consulted on the web, with a browser. The
Subscription Manager is in charge of controlling the entire process.

The various modules and their roles are considered next.
Alerters (see Section 6) The whole monitoring is based upon the
detection of atomic events. These depend on the type of documents
that are being processed. For instance, for HTML documents, typ-
ical atomic events we consider are the matching of the URL of the
document against some string pattern or the fact that the document
contains a given keyword. For XML documents, we would also
consider, for instance, the fact that the DTD of the document is a
DTD we are interested in, or that it contains a specific tag, or that a

new element with a tag we are monitoring has been inserted in the
document.

The role of the Alerters is to detect these events for each docu-
ment entering the system, and if that is the case, to send an alert for
the particular document. Thus we see that these modules are ap-
plication dependent. We distinguish between three kinds of alert-
ers: (i) URL alerters that handle alerts concerning some general
information such as the URL of a document or the date of the last
update, (ii) XML alerters that are specific to XML documents and
(iii) HTML alerters for HTML documents. (Only the first two have
been implemented.)
Monitoring Query Processor (see Section 4) The system must
detect conjunctions of atomic events that correspond to subscrip-
tions. We call complex event such a conjunction of atomic events.
The role of the Monitoring Query Processor is, based on the alerts
raised by a document (i.e. a set of atomic events), the detection
of the complex events that this document matches. When such a
complex event is detected, the Monitoring Query Processor sends
a notification that consists of the code of the complex event1 along
with some additional data (see the ���

�
����� clause further) to the Re-

porter and/or the Trigger Engine.
Trigger Engine The Trigger Engine can trigger an external action
either upon receiving a notification, or at a given date. In our set-
ting, it is in charge of evaluating the continuous queries either when
a particular notification is detected or regularly (e.g., biweekly).
The query code combined with the result of the query forms a no-
tification that is sent to the Reporter.
The (Xyleme) Reporter The Reporter stores the notifications it re-
ceives. When a report condition is satisfied, it sends these notifica-
�
In fact all the complex events are detected on a document simul-

taneously and thus are sent to the Reporter/Trigger Engine in one
batch.

tions as an XML document. The Xyleme Reporter post-processes
this report, basically by applying an XML query to it. Reports are
for the moment sent by email. We are considering the support of
an access to reports via web publication which seems more appro-
priate for very large reports. The main difficulty for the reporter is
the management of a heavy load of emails. In our implementation,
the Reporter supports hundreds of thousands of emails per day on
a single PC. This limitation is due to the UNIX send-mail daemon
implementation.

On a single PC, the subscription system can process over 2.4 mil-
lion notifications per day when connected to the rest of the Xyleme
system and hundreds of thousands of emails. It is designed to be
distributed although distribution has not been tested yet.
The (Xyleme) Subscription Manager The Subscription Manager
receives the user requests and manages the other modules of the
subscription system. Indeed, the Subscription Manager guides and
controls the activity of the other modules.

To construct a subscription, a user posts it to our Apache [3]
server with his browser. The form is subsequently processed by the
Subscription Manager. Its first role is to serve as an interface for the
insertion of new subscriptions and the deletion or modification of
existing ones. To be more precise, the Subscription Manager is split
into a generic module and an Xyleme specific module. The specific
one is in particular in charge of parsing the subscriptions. In our
implementation, both modules use the same MySQL database [5]
for recovery. Information about users such as email addresses is
also stored in this database.

The second role of the manager is to control the various compo-
nents of the subscription system. For instance, it chooses the in-
ternal codes of atomic events and (dynamically) warns the Alerters
of the creation of new events, their codes and semantic. It controls
in a similar manner the Monitoring Query Processor for managing
complex events, the Trigger Engine for continuous queries and the
Reporter(s) for reports.

The Subscription Manager’s task is not as intensive as that of
other modules, since it only depends on the number of people that
decide to subscribe to our system at the same time (a few hundred),
whereas the Alerters depend on the total number of people that
have subscriptions (millions). The Subscription Manager runs on a
single machine.

4. MONITORING QUERY PROCESSOR
In this section, we consider the Monitoring Query Processor. In

particular, we introduce a novel algorithm to perform the detection
of subscriptions that are matched by each document. The main
difficulty is the heavy rate of arrival of documents and the number
of subscriptions we want to process. We next present the problem,
our algorithm, then a brief analysis.

4.1 Overview
For each document

� �
that is fetched by the system, the alerters

detect the set of atomic events that are raised by this document. The
role of the Monitoring Query Processor is to decide whether this
set of events contains all the events in a complex event associated
to a particular monitoring query. In such a case, a notification is
triggered.

The main difficulty of the problem is that we need to support a
rate of millions of documents per day. So, for instance, we cannot
afford one disk I/O access per event detected. Before focusing on
the algorithm, we briefly consider without going into details other
important aspects of this module:

� Subscriptions keep being added, removed and updated while

the system is running. Thus the data structure we use has to
be updatable dynamically. Although our system does support
such updates, we will ignore this issue here.

� Persistency and recovery are handled here by the Subscrip-
tion Manager that pilots a MySQL database.

� The Monitoring Query Processor has no semantic knowl-
edge of the data associated to the atomic or complex events it
handles. Such additional information is passed in XML for-
mat, from the Alerters to the Reporter in a transparent man-
ner.

We now present the algorithm. Let
��� ���

be the list of docu-
ments that is being filtered. Let � denote the set of all possible
atomic events where an atomic event in our setting corresponds to
an atomic condition in the where clause of a monitoring query (see
Section 5). A complex event � is a finite subset of � . The core
notification process can be abstracted as follows:

� Let � � � ��� �����
	��� �
represent the finite set of

complex events that is being monitored. (
�

is the number
of complex events.)

� Let � ��� � ��� � represent the finite set of atomic events of
interest.

� Let � ��� � represent the set of atomic events detected for
document

���
.

The Monitoring Query Processor must determine for each

, the set��	 � � � � � � � .

It is convenient to assume some ordering on the atomic events,
i.e., � � ��� ����������� ��� � . Thus, each � � and � � are considered as
ordered subsets of � .

Typically, we are considering the case where we have about 1
to 10 million atomic events (��� � �"!

) and 1 to 10 million com-
plex events (

� � � �"!
). Note that the problem can be stated as

a finite state automata problem. For each

, we need to find the

words in
� � � ��������� �$# � “contained” in the word � � . In principle,

we could detect this using a finite state automaton in linear time
(in the cardinality of � �) and in constant time in the other inputs to
the problem. Unfortunately, because of the size of the problem, the
number of states of the automaton would be prohibitive.

We next present the algorithm. It should be noted that before
selecting this particular algorithm, we considered alternatives. We
found out that the choice of one over the other depended on the
conditions of use of the system. A critical factor is the number of
atomic conditions in a complex event. Another critical factor is the
number of complex events interested in a specific atomic condi-
tion. An interesting candidate algorithm we considered turned out
to be exponential in that factor. The cardinality of the set of atomic
events detected on a document is also important. The algorithm
we introduce next presents (as we shall see) a nice behavior with
respect to these three aspects as well as others.

4.2 Algorithm: “Atomic Event Sets”
We use a recursive algorithm. The main idea of the algorithm is

to take advantage of a data structure that enables immediate test-
ing of sets of atomic events. The algorithm presents the advantage
of reducing the dependence on the fact that many complex events
may be interested in the same atomic event. The data structure is
represented in Figure 4. The entry is made of a large table % of
all atomic events in � . Each other table corresponds to a prefix of
atomic events, e.g., % �'& (to the complex events

� � � ()����� . A mark

in the corner of a cell indicates that the prefix indeed corresponds
to a complex event � � . More precisely, a mark ��� in an

� �
cell of

% indicates that the
�

-th complex event is
� �

. Similarly, a mark ���
in an

� �
cell of table % ����� � � �	� indicates that the

�
-th complex event

is
� �	� ����� � � � � � .
In the implementation, the % and %�
 tables are stored as hash

tables. This data structure is similar to the data mining hash-tree,
with a variable fan out value. In data mining terms, we want to
find all itemsets (Complex events) that are supported by a given
transaction (Incomming events).

c43

c25

c10

c9

a3

H1

H1,5

c201

c3

a0

H

a7

a8

c7

c11

c50

c60

c13

c0:a0

H1,3

c15

c4:a5

a5 a8

H5
H8

a6 a9

a12

c4c527c0

c15:a3
c7:a5a6
c11:a5a7
c50:a5a8
c60:a8a9
c13:a8a12 c31

H99

a6

a8

a4

Complex events detected:

a1 a2

a101a3

a5

a7

a5

c10:a1a3
c201:a1a3a4
c3:a1a3a5
c43:a1a5a6
c25:a1a5a8
c9:a1a7
c527:a2

c31:a99a101

a99

Figure 4: Data structure using a chain of atomic events

Let us consider how the algorithm runs using an example. Sup-
pose the document that is being processed has triggered the or-
dered atomic event set � � ��� � � �� � � (� . We first enter the data
structure by %�� � ��� , i.e., the first event of � . (Since the box is not
marked,

� � alone is not a complex event.) We proceed to % � . We
find

�
. Since the box is marked, we detected the complex event

� ��� � ��� � � �� � . Then we proceed to table % �'& . We see that the
cell containing

� (is marked, this means we also detect the complex
event � � ��� � � � � � (� . Back in table % � we find

� (, but the cell
is not marked. Since we have no more atomic events left to process
in this sub table, we exit it. We now reenter the data structure with��

, to find � � (� � �� �
. Since this cell does not point to a sub

table, we stop its processing here. Then we enter cell
� (and detect

the complex event ��� � ��� (� . We have no more atomic events
to process, so our task is over. The document triggered 4 complex
events: � ��� � � � � � (and ��� .

Observe the algorithm is recursive, so potentially very costly in
the length � of the atomic event set � detected (naı̈vely ������� �).
Nonetheless our experimentation shows that in practise its behavior
is much better. See the analysis further in Section 4.2.

Let us consider the algorithm more precisely. Observe Figure
4. The main components of the data structure are tables. For each
table � and each atomic event

� � , we denote by � � � � � the
� � entry

of the table. Starting from a document
� �

and the ordered set � �
of atomic events detected on document

� �
, we produce the set of

notifications using the following algorithm:
Algorithm For each ordered set � of atomic events, the result set
is Notif � % � �!� where the function Notif is defined as follows:

� is the % table or an %
 table
� ��� ����� � �#" is an ordered set of atomic events

Function Notif(� ,
� �	� ����� � � ")

1. $ � �&% � � �('
2. For each

�
in � � ���)*� do

(a) if � � � � � � is marked, add its mark to $ � �+% � �
(b) if � � � �,� � points to some table �.- ,

add Notif ��� - � � � �0/ � ����� � �," � to $ � �&% � �
Example Let us run the algorithm on a different input, � � � � �21'�� .
The following sequence of operations occur for Notif � % � � � � 1 � � :

� %3� � � � is considered without success.

– Notif � % � � ��1��� � .
–

��1
is not in % � .

– % � � �� � is considered and � ��� is found.4 % � is not considered since there are no more events
to process.

� %3� �21 � is considered and � (165 is found.

– % � 1 does not exist.

� %3� � � is considered and � � (is found.

– % � does not exist.

Analysis in brief
We next present a brief analysis2. From an algorithmic view-

point, the performance critically depends on the following parame-
ters:

� the average number 7 of atomic events in a complex event.
A complex event may be, for instance, composed of a URL
pattern (URL=“www.xyleme.com/*”), a status for the docu-
ment (e.g., UPDATED), and a condition on an element (e.g.,
category = “hi-fi”). Parameter 7 will typically be small, say
between 3 and 4. It is unlikely in our context to exceed 7 or
8.

� the average number � of atomic events triggered by a docu-
ment. This represents the length of � . Clearly, this parame-
ter depends on the number of subscriptions that are checked
in, and on their nature. For instance, if we are monitoring
extremely rare atomic events, � will tend to be quite small
whereas if we are monitoring very common events (e.g., the
word �67 � is in the document), it will have a tendency to be
rather large. We will assume in our analysis that this param-
eter ranges from 10 to 100.

� the number of atomic events � �98 � � �:� and of complex events
� ��8 � � �;� . The system is designed to work with millions of
complex events. It is a bit harder to estimate the number of
atomic events. We believe that � �98 � � �:� will be smaller than
� ��8 � � �;� , between 2 to 100 times smaller.

� the average number
�

of complex events interested in the
same atomic event. This is possibly the hardest parameter
to estimate. When the number of users of the system grows,
this number

�
could have a tendency to grow. Also, there

may be thousands of complex events that will involve the url
of Amazon’s whereas only very few will be concerned with
the url of John Doe’s home page. We will estimate

�
based

on the other parameters.

We performed experimentations to evaluate the impact of the
various parameters. A major difficulty is that it is very difficult to1
A more detailled presentation of the algorithm is beyond the scope

of this paper. These are only simple ideas to explain the experimen-
tal behavior of the algorithm.

0

200

400

600

800

1000

1200

0 20 40 60 80 100

tim
e

pe
r

do
c

Card(S)

Variarion of the time to process a document in microseconds function of Card(S)

Card(C)=10000
Card(C)=100000

Card(C)=1000000

Figure 5: Influence of the � parameter

isolate one parameter. In our experimentation, we completely con-
trolled � �98 � � �;� � � and 7 . For � �98 � � �:� , we fix an upper bound.
Then to produce the test set, atomic events are randomly drawn in
the set

��� � ��������� ���������	��
� � with no guarantee that they will all be
taken. Finally, to obtain

�
, we use the fact that3 � � can be estimated

as

�������	��
��������	�����
. One would expect that the behavior of the system de-

pends on the values of some of these parameters. It turns out that it
also depends in a complex manner on relationships between them
such as � � � 7 or � � � 7 . Thus, a complete analysis of the algo-
rithm is complex and is beyond the scope of this paper. We briefly
present here results on the experimentation that highlight the good
performance of the algorithm in our context. In all our experiments,
we evaluate the average time for processing one document.

First, we fixed all parameters and let � vary. Our tests showed
that the processing time (at least in our context) is linear in � . Fig-
ure 5 shows the time to process one document in milliseconds as a
function of � . The different lines are plotted with different values
of � �98 � � �.� and � �98 � � �;� , ranging from 10000 to 1 million. One
can note that even for � � ���"�

the time to process one document is
only about 1 millisecond.

Then, we turned to the dependence on 7 . We considered only the
realistic case where � � � 7 . Our tests showed that the complexity
is independent of 7 for 7 ranging from 2 to 10.

80

100

120

140

160

180

200

220

1 1.5 2 2.5 3

tim
e

pe
r

do
c

log k

Variarion of the time to process a document in microseconds function of log(k)

Figure 6: Influence of the
�

parameter

Its demonstration is simple and omitted here.

Perhaps the most interesting dependence is that on
�

. To study
the dependence on

�
, we ran our benchmark with for instance � �� �

, � �98 � � �.� � ���"� �"�
and 7 ��� . We controlled the variation of�

by varying � �98 � � �;� from 10000 to 1 million. Thus
�

varies from7 to
� �"��� 7 . Figure 6 shows that the experimental dependency is��������� � � .

We next give some intuition to explain the complexities that
we observed and that may be somewhat unexpected. Consider an
atomic event

� �
and the substructure consisting of % ���

and all its
subtables % � �
 . Observe that, by definition of

�
, the atomic event� �

is in
�

different complex events. Thus the substructure con-
tains at most

�
cells that are marked, so contains ��� � � cells. From

this, one can roughly estimate that the processing of the substruc-
ture would be in time ��� � � , so the processing of a set of � atomic
events would only be in ����� � � � . Furthermore, a more careful
analysis shows that the substructure contains on average much less
than ��� � � cells. Indeed, experimentation shows that the algorithm
runs in ����� � ����� � � .

Measures show that the algorithm can process several thousand
sets of atomic events per second on a standard PC. This should
be compared to the rate of our crawler. Currently, one Xyleme
crawler [19] is able to fetch about 4 million pages per day, that is
approximately 50 per second. Thus the Monitoring Query Proces-
sor we described here can support the load of about 100 crawlers.
The data structures we use require about 500MB of memory for
� �98 � � �.� � � � ! � � �98 � � � � � ��� 5

and 7 � � �
. Like the other

modules, the Monitoring Query Processor was designed so that its
task could be distributed on several machines. Typically, one can
use distribution along two directions:

1. Processing speed: we can split the flow of documents into
several partitions and assign a Monitoring Query Processor
to each block of the partition.

2. Memory: we can split the subscriptions into several parti-
tions and assign a Monitoring Query Processor to each block.
This results in smaller data structures for each processor.

Based on these two kinds of distributions, we obtain a very scalable
system.

The Monitoring Query Processor is generic in that it may be used
for a very wide range of applications. We next turn to parts of the
system that are more specific to monitoring a flow of Web pages.
In the next section, we consider the subscription language; and in
the following one, the specific alerters we use.

5. THE SUBSCRIPTION LANGUAGE
In this section, we briefly describe the subscription language.
As we have seen in Figure 2, a subscription consists of the fol-

lowing parts: (i) monitoring queries, (ii) continuous queries, (iii)
report specification, and (iv) refresh statements, and is of the fol-
lowing form:

subscription name
monitoring... % (i)
continuous... % (ii)
report when... % (iii)
refresh... % (iv)

We next consider (i,ii,iii) in turn; (iv) will be ignored in this paper.
To conclude this section we consider the issue of controlling sub-
scriptions to block requests that would require too many resources.

5.1 Monitoring Query
A monitoring query has the general form:

select result
(from from-clause)
where condition

The from clause This clause may be omitted because we know
the data that is being filtered, i.e., the document that is currently
being processed. This current document is denoted self in the query.
A from clause may be used to attach variables to elements of the
current document.
The select clause This clause describes the data the resulting notifi-
cation should contain based on constants, ���

���
or variables defined

in the from clause. The notification itself is an XML element. For
the moment, we have not implemented this part of the system. No-
tifications simply return the URL of the document that triggered the
monitoring query and basic informations about the document.
The where clause This clause is a condition that consists of a con-
junction of atomic conditions. An atomic condition may be of one
of the following:

URL extends string URL = string
DTDID = integer DTD = string
DOCID = integer domain = string
filename = string

where domain is one of the semantic domains that Xyleme uses
to classify documents (e.g., biology), DOCID, DTDID are inter-
nal identifiers, and filename is the tail of an URL (e.g., index.html)
. Other atomic conditions deal with information about documents
that either is maintained by Xyleme or can be obtained by the alert-
ers when the document is fetched: e.g.,

� LastAccessed � comparator � date

� LastUpdate � comparator � date

� self contains string

� � � � � � % ��� self

where � � � � ��% ��� is defined as one of: new, unchanged, updated,
deleted4.

The most interesting atomic conditions deal with element values
inside a document and are meaningful only for XML documents.
Their syntax is as follows5:

(� ��7 �)�� ���) � � � �
	 �) � -) � 	 ��� (contains string)

The � ��7 �)�� ��� keyword means some change pattern of the elements
of a given name (tag) will be monitored, e.g., we are only inter-
ested in documents containing a new element with the tag product.
We may also impose that the element contains a given string, e.g.,
we are only interested in document with an element containing the
word electronic and under the tag category. The semantic of con-
tains is that this string occurs within the element. We also support
strict contains string that specifies that the string must be present
directly in the text of the element.

A where clause is a conjunction of atomic conditions, e.g.:
� new self

and URL extends “http://www.xyleme.com//”
(new documents with a certain URL pattern)

� new Product
and URL extends “http://www.amazon.com/catalog/”
(documents in a particular catalog containing a new product)� We will not discuss deletions in this paper. It is not an obvious

notion since deletion is rarely explicit on the web.(
Parenthesis denote an optional parameter

� updated Product contains “camera”
and DTD=“http://www.amazon.com/dtd/catalog.dtd”
(documents with a particular DTD containing an updated
product containing the word camera).

Each atomic condition is mapped to an atomic event. Note that
it is likely that each document we read will raise one atomic event
involved in at least one subscription, i.e., one in new, unchanged,
updated. So, if we are not careful we would have to raise one alert
for each document, that is, we would have to send a set of atomic
events to the Monitoring Query Processor for each document. To
avoid this, we distinguish between weak events (new, modified, un-
changed) and strong events (all other atomic events). We disallow
where clauses composed solely of a weak atomic condition. Thus,
a document is detected as potentially interesting if at least a strong
atomic event of interest for a subscription is detected. In this case
only, an alert, consisting of the set of atomic events detected plus
some extra data (defined by the select clause) is sent to the Moni-
toring Query Processor.

5.2 Continuous queries
As mentioned in Section 2, a subscription may also include one

or more continuous queries that will participate in the notifica-
tion stream. A continuous query consists of a standard Xyleme
query [2] plus a condition that specifies when to apply the query.
Typically, this condition involves a frequency (e.g., every week).
The continuous query may also be triggered by a notification sent
by the subscription processor.

Consider the continuous query:

continuous delta AmsterdamPaintings
select p/title
from culture/museum m, m/painting p
where m/address contains "Amsterdam"
when biweekly

that asks for the names of all paintings found in an Amsterdam
museum. Here culture is an abstract domain that provides an inte-
grated view of museum resources. We ask the system to evaluate
the query twice a week. The report will therefore contain a list of
results:

<AmsterdamPaintings> ... </AmsterdamPaintings>
<AmsterdamPaintings> ... </AmsterdamPaintings>

The use of the keyword delta specifies that we are interested by
changes to the result and not by the result per se, and that we are
interested in storing the delta of this document [17]. So the first
time the query is evaluated, we get its answer, but later, we only
receive the modifications of the result such as:

<AmsterdamPaintings-delta> ...
<inserted ID="556" parent="556" position="4">

<title> ... </title>
<title> ... </title>

<updated ID="332" note="not available
-- visiting MOMA">

</AmsterdamPaintings-delta>

Identifiers such as 556 are used here as the foundation of a nam-
ing scheme for XML documents that makes the specification of
changes easier. Deltas based on XIDs provide a compact naming
of the elements of the documents that is the basis of the version-
ing mechanism of the system. In particular, the new version of a
document can be constructed based on an old version and the delta.
We also provide a practical change editor for the visualization of

changes in XML documents or query results in the spirit of change
editors as found, for instance, in MS-Word. A key component for
defining these changes is the diff package for XML that we devel-
oped. A detailed presentation of these mechanisms can be found in
[17].

In the previous example, the continuous query is asked with
some time frequency. It is also possible to trigger the evaluation
of a continuous query with notifications from a monitoring query
as in:

subscription XylemeCompetitors

monitoring
select <ChangeInMyProducts/>
where URL = ‘‘www.xyleme.com/products.xml’’

and modified self

continuous MyCompetitors
select ...
when XylemeCompetitors.ChangeInMyProducts

This requests the system to reevaluate the query whenever it detects
a change in the products.xml page.

5.3 Reporting
The report part of a subscription has the following form:

select ... % report query
when ... % reporting condition
(atmost) ... % limiting conditions
(archive) ... % archiving information

The report query is a standard Xyleme query that takes as input the
current set of notifications, i.e., an XML document, and produces
another XML document. The when clause tells when to fill in a
new report. It follows the syntax:

��� 7 �) � � � % ����� :=

 	 	 �

�
 �
� �
�

����� �) � �!��� 8 ����� �) � �6� 4
����� �) � � := � � 8 ��� % �) �
	 � � � � ��7 � � � � � -� � � � � 8) � �

� �
� %) � � �

) � � � � 8 �

�) � �
 �
 � � �
 �)) � 	 ���
� � 8 ����% �) ��	 � :=

� � 	 � 	 �� � �
� � 	 ���
� � �

� � 	 � 	��) �67 � 	
� ����%) � � := �
� %) � �

�
� %) ������� �) � �
 �
 � � �
 �)) � 	 ����� ���
� � � � � -� � � � � 8) � := 	��) � � 	 � ��% � � � � 	 ����� �� �) % �98 	 � � � � � �) % �98 	 �) � �����

where) � �
 �
 � � �
 �)) � 	 � is the name of a monitoring query (e.g.,
UpdatedPage). The semantics of these report conditions with a few
exceptions should be clear. A condition of the form ����%) � ��� � �
means that a report is generated whenever 500 notifications have ar-
rived. A condition �
� %) ������� � � � � ��� � � ��� �

� �
means that the re-

port is generated when 10 UpdatedPage notifications have arrived.
Immediate means that as soon as something is added to this sub-
scription, a report is generated. The disjunction of several condi-
tions means that a report is generated whenever one of the report-
ing conditions holds. The generation of a report for a subscription
empties the global buffer of notification answers.

The when clause is compulsory whereas the last two clauses are
optional. The atmost clause sets a limit to the reporting query. For
instance, atmost 500 means that after 500 notifications, we will stop
registering the new notifications until the next report. Also, atmost
weekly means that, we do not send a report more frequently than
once a week even if the when condition “triggers” more often.

Finally the archive clause requests the results of this particular
subscription to be archived for some period of time: For instance,
archive monthly requests to archive the reports for this particular
subscription for a month before garbage collecting them. We refer
to [14] for more details on the reporter.

5.4 Controlling subscriptions
It should be noted that the cost of some monitoring or continuous

queries may be quite prohibitive. This is the reason why we only al-
low the condition extend URL, and not the matching of an arbitrary
pattern. Similarly, one would like to prevent the use of contains
conditions on too common a word such as “the” or attempting to
refresh every day all documents in too wide a domain such as bi-
ology. As a last example, we do not want to trigger a continuous
query with too frequent an event, e.g., an event that would occur
every minute. To control this, we could use a cost model to esti-
mate a priori the cost of a subscription and to restrict the right of
specifying expensive subscriptions to users with appropriate privi-
leges. Perhaps a simpler solution would be to allow arbitrary sub-
scriptions, but inhibit them a posteriori, if the system finds out they
require too much resources.

To the same end of avoiding the waste of resources, we men-
tioned in the introduction the possibility of using techniques as in
[13, 8] to factorize the work in monitoring and continuous queries.
Although we have not introduced such optimizations yet, we do
however let some subscriptions share monitoring and continuous
queries from other subscriptions. These are called virtual subscrip-
tions. For instance, a user may request the following subscription
(purely virtual):

subscription MyVirtualXyleme
virtual MyXyleme.Member

A user specifying such a subscription is simply registering to a sub-
scription owned by another user. In other words, we distinguish
here between the possibility of creating monitoring and continuous
queries (expensive for Xyleme) with that of subscribing to them
(that only puts stress on the Reporter).

6. ALERTERS

XML Alert

World Wide Web

Monitoring Query Processor

XML Alerter HTML Alerter

Alerts + InformationsAlerts + Informations

HTML Alert
URL Alerter

Figure 7: Overview of Alerters architecture

Alerters are the first step of the notification chain. When a doc-
ument is being retrieved, it is first handled by the URL manager.
If it is an XML document, it is managed by the XML loader. (For
HTML documents, the story is a bit different but similar and will
not be considered in detail here.) Alerters are in charge of detecting
atomic events and sending them to the Monitoring Query Proces-
sor. This is the topic of this section. We next consider the architec-
ture, then two kinds of alerters, the URL and the XML Alerters.

6.1 Architecture
To avoid unnecessary network traffic, alerters have to be set as

close as possible to the modules they monitor. For instance, the

WordTable

word

TagTable

tag

Atomic Event Code

The 2-uple is inserted in this table.
For condition ’SELF\\tag CONTAINS word’

Figure 8: Registering (Tag, Word) conditions

URL Alerter must be placed next to the URL manager (that is gath-
ering metadata about documents), and the XML Alerter next to the
XML Loader (that is in charge of loading XML documents). An
Alerter plugged into a specific module first of all interacts with its
host to get the information it needs to detect the alerts. Then it
communicates to other modules (see Figure 7):

1. an Alerter sends its alerts and their associated information to
the Monitoring Query Processor that is in charge of handling
them.

2. an Alerter may send the atomic events it detected on a doc-
ument to another Alerter for further investigation onto some
data.

For performance reasons, each alerter uses different threads for in-
put and output.

An essential aspect of this process is that we collect all the atomic
events of interest on a given document before sending them to the
Monitoring Query Processor, and thus the Monitoring Query Pro-
cessor receives simultaneously all the atomic events concerning
a document. For instance, for an XML document, some atomic
events may be detected by the URL Alerter, then sent to the XML
alerter that may detects more atomic events. A single alert is then
sent to the Monitoring Query Processor. Based on the content of
these alerts, the system may decide to do more processing, e.g.,
send a notification to the Reporter or to the Trigger Engine. Thus
we use an approach that is typically based on a document flow, vs.
workflow.

6.2 URL Alerters and pattern detection
In this section, we briefly consider the URL Alerter and, in par-

ticular, its main task, namely, pattern detection.
The role of the URL Alerter is to construct, for a document, the

sequence of atomic events that have been detected on a document.
It must produce a sorted sequence since, as we have seen, the Mon-
itoring Query Processor takes advantage of the ordering. We expect
such a sequence to be reasonably small (at most a few thousand).

The URL Alerter must be able to manage millions of atomic
events, and detect such events on the incoming data (here some
metadata about the page that is being fetched) without slowing
down the rest of the system. The main data structure of the URL
manager is devoted to this detection. (Again, we will ignore here
the issues of the runtime update of the data structure.) To be more
precise, we use several datastructures depending on the nature of
the conditions, e.g. one for URL extends string and a different one
for domain = string. Our data structures are standard and essen-
tially use hash tables and extensible arrays implemented with STL
[26].

We next focus on the detection of URL patterns that ais by far
the most critical in terms of performance. We handle three kinds of
URL pattern detections:

1. URL extends string (e.g. www.xyleme.com/*)

2. filename = string (e.g. */Xyleme2000.xml).

3. URL = string (e.g. www.xyleme.com/index.html)

Each one of them is handled using a separate data structure. To han-
dle extends, given the URL of the document that is being fetched,
we look up each of its prefixes to see if it matches the ’URL*’ pat-
tern of some atomic event of interest. The dominating cost is the
look-up in the million-records hash table. To obtain a linear lookup
cost, we tried using a dictionary structure. This improved the speed
by about 30 percent. But in terms of memory size, the overhead
was too high.

Observe that the URL Alerter is working concurrently with the
URL Manager. Typically, alerters should not slow down the pro-
cess they monitor by holding up resources. Thus, in particular, it
is important that the alerters be able to handle many documents
concurrently.

6.3 XML Alerter
The main purpose of this alerter is to detect atomic events of the

form:

(� �&7 �)�� ���) � � � ��	 �) � -) � 	 ��� ((strict) contains string)

For the detection of changes (elements inserted, updated, etc.), we
compute the delta between the document that is being loaded and
its previous version (if available) [17]. We will ignore this aspect
here and will focus on the detection of words of interest in the doc-
ument:

� � � �
	 �) � -) � 	 ��� (strict) contains string

Recall that contains means that the word with a particular tag must
be found anywhere in the subtree. On the other hand, strict contains
means that the element with this tag directly contains this word, i.e.,
in DOM terms [11], a node with this particular tag has a data child
containing this particular word.

Our algorithm relies on the postfix traversal of the DOM tree.
For each node) in the tree, let �;�) � be the pair: � � ��� � � � �
�) � �) ���
where:

1.
�
��� � � is the level of the node in the tree;

2. content is either the tag if the node is an element node or the
data if the node is a data node.

Let
�) � � � �) � �) � �) 1 � ����� � be the list of the nodes in a pos-

torder traversal of the tree. To handle contains, we use the flow
of
� � �) � � � . While processing �;�) � � in the flow

� � �) � � � , it is easy
to have the list of words in the subtree rooted at) � and those di-
rectly below) � . To do that, two different data structures are used
(See Figure 8):

1. For each “interesting” word

, we use a hash table called
TagTable � � . For each tag

�
such that � � � � is an atomic

event of interest, the table provides its code. The TagTable’s
can be accessed from another hash table named WordTable.
Due to the different nature of condition contains and strict
contains, we need two data structures, one for each.

2. Let us first consider contains. For the document that is be-
ing processed, we use a data structure that provides for the
node being processed, the list of words of the tree rooted at
this node, and this at no cost. This is where we benefit from
the postordering in the input to the algorithm. We can essen-
tially handle the words in a stack of lists of words. Note that
we can save some space and processing by keeping in this
structure only words that are interesting, i.e., are entries in
the contains WordTable. Now let us consider strict contains.
It is somewhat similar since two data children of the node
may be separated by an element node, so we have to process
the trees rooted at child element nodes before processing the
node itself.

Observe that this second data structure may contain at some point
in the worst case all words of a document, i.e. be roughly of the
document’s size. With respect to time, we may have to perform
one lookup for each word of the document at each level of the doc-
ument, which leads in the worst case to Size

�
Depth, where Size is

the number of words in the documents, and Depth is the maximum
depth of the tree structure of the document. For XML documents
found on the web, it turns out that the depth of the document is
rather small, so on average, this is an acceptable cost.

In our experiments, the Alerters could easily support the rate of
fetching documents on the web imposed by the crawlers and URL
managers.

7. CONCLUSION
The work described here has been implemented and integrated to

the Xyleme system. We already mentioned some limitations. The
refresh clause, the (full) select clause, and the HTML alerters are
not yet implemented. All the rest is running.

Future developments include:

� We started a formal study of the Monitoring Query Proces-
sor’s algorithm. This turns out to be nontrivial and quite in-
teresting from an algorithmic analysis viewpoint.

� A more precise study of dynamic changes to the subscrip-
tion base and their impact on our system also represent future
work.

� We are finishing the implementation of the subscription sys-
tem, e.g., Xyleme Select module.

� Little work has been invested on the Trigger Engine and the
continuous query module. We intend to work on this next.
We mentioned the use of optimization techniques.

� It is interesting to also consider other practical uses of the
Trigger Engine, e.g., for the analysis of certain documents,
their automatic classification, versioning, etc.

� One might also consider using a combination of the Monitor-
ing Query Processor and the Trigger Engine to monitor com-
plex events that would include disjunctions of atomic condi-
tions. However, the use of more powerful logic operators has
not yet been considered.

Acknowledgments We would like to thank Jérémie Jouglet and
David Leniniven for implementing the reporter, INRIA postmas-
ter, and finaly the members of Verso group and Xyleme SA. for
the valuable comments they provided. We want to thank in partic-
ular Laurent Mignet for discussions and other contributions to the
present work.

8. REFERENCES
[1] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on

the Web. Morgan Kaufmann, California, 2000.
[2] Vincent Aguilera, Sophie Cluet, Pierangelo Veltri, and Fanny

Watez. Querying xml documents in xyleme. ACM SIGIR
Workshop on XML and information retrieval, 2000. To
appear.

[3] Apache web server. http://www.apache.org/.
[4] The internet archive. http://www.archive.org/.
[5] Kevin Atkinson. Mysql++ a c++ api for mysql, 2000.

http://www.mysql.com/documentation/.
[6] S. Chawathe, S. Abiteboul, and J. Widom. Representing and

querying changes in semistructured data. Proceedings of the
IEEE International Conference on Data Engineering, pages
4–13, 1998.

[7] S. Chawathe, S. Abiteboul, and J. Widom. Managing
historical semistructured data. Theory and practice of object
systems, 5(3):143–162, August 1999.

[8] Jianjun Chen, David DeWitt, Fend Tian, and Yuan Wang.
Niagaracq: A scalable continous query system for the
internet databases. ACM SIGMOD, page 379, 2000.

[9] Webcq, opencq webpage.
http://www.cc.gatech.edu/projects/disl/WebCQ/.

[10] Corba web page. http://www.omg.org/.
[11] Document object model (DOM) level 1 specification version

1.0, October 1998.
[12] F. Fabret, F. Llirbat, J. Pereira, and D. Shasha.

Publish/subscribe on the web at extreme speed. submitted to
publication, 2000.

[13] Eric Hanson, Chris Carnes, Lan Huang, Mohan Konyala,
Lloyd Noronha, Sashi Parthasarathy, J.B. Park, and Albert
Vernon. Scalable trigger processing. Proceedings of the 15th
International Conference on Data Engineering, pages
266–275, 1999.

[14] Jérémy Jouglet. Souscription de requêtes dans un entrepôt de
données xml. Stage d’option scientifique de l’École
Polytechnique, 2000.

[15] Ling Liu, Calton Pu, and Wei Tang. Continual queries for
internet scale event-driven information delivery. IEEE
TKDE, 11(4):610, 1999.

[16] Ling Liu, Calton Pu, Wei Tang, and Wei Han. Conquer: A
continual query system for update monitoring in the www.
International Journal of Computer Systems, Science and
Engineering, 2000.

[17] Amélie Marian, Serge Abiteboul, and Laurent Mignet.
Change-centric management of versions in an xml
warehouse, October 2000. BDA’00.

[18] Alain Michard. XML, langage et applications. Eyrolles,
Paris, 1999.

[19] Laurent Mignet, Serge Abiteboul, Sébastien Ailleret, Bernd
Amann, Amélie Marian, and Mihai Preda. Acquiring xml
pages for a webhouse, October 2000. BDA’00.

[20] Mind-it web page. http://mindit.netmind.com/.
[21] Guido Moerkotte. The aodb relational system. U. Mannheim,

personal communication, 1999.
[22] Niagara webpage. http://www.cs.wisc.edu/niagara/.
[23] Northern light news search.

http://www.northernlight.com/news.html.
[24] Information on clusters of pcs.

http://www.alinka.com/fr/index.htm.
[25] R.T. Snodgrass, editor. The TSQL2 temporal query language.

Kluwer Press, 1995.
[26] Bjarne Stroustrup. The C++ programming language.

Addison-Wesley, Reading, Massachusetts, special edition,
2000.

[27] W3C. eXtensible Markup Language (XML) 1.0, february
1998.

[28] World Wide Web consortium page on XML.
http://www.w3c.org/TR/REC-XML.

[29] J. Widom and S. Ceri. Active database systems: Triggers and
rules for advanced prcessiong. Morgan-Kaufmann,
California, 1995.

[30] Jennifer Widom. Research problems in data warehousing.
International Conference on Information and Knowledge
Management (CIKM), 1995.

[31] Xyleme home page. http://www.xyleme.com/.

