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Chapter 1

Introduction

The new era of XML Web services is the most exciting ever

for this industry and for customers worldwide.

Bill Gates

Le Web est une grande poubelle à ciel ouvert. Il faut savoir

détecter l’importance de ce que l’on retient.

Serge Abiteboul

For me the fundamental Web is the Web of people. It’s not

the Web of machines talking to each other; it’s not the

network of machines talking to each other. It’s not the Web

of documents. Remember when machines talk to each other

over some protocol, two machines are talking on behalf of

two people.

Tim Berners-Lee
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Context In the recent years, two events related to the Wold Wide Web have

changed dramatically the way people can use it. One is the explosion of content,

i.e. the increase of published documents and data on the web. From administrative

forms to scientific or medical data, as well as home, travel and entertainment, the

web has become the largest repository of content that is freely available since the

beginning of mankind. The second event is the creation and acceptance of XML-

related technologies. The use of XML and semi-structured data will enable the

development of high quality services on the web.

Users are interested in gathering knowledge and data from the web. One may

remark for instance that users often search for news. Newspaper sites (e.g. LeM-

onde, CNN or TF1) have had a remarkable success. Consider for instance a person

who is interested in Art, or History. Even if there is already a very large amount

of available knowledge on the topic, this person often wishes to subscribe to news

magazines, mailing lists or newsletters to be regularly informed. We believe that

users are often interested as much (if not more) in changes of data, e.g. new data,

than on the data itself.

In this thesis, we present work on the topic of change-control. In particular our

work considers change-control on the web, and change-control on semi-structured

data. In other words, we consider data and their changes from a microscopic scale

to a macroscopic scale. More precisely we consider data and changes at the scale

of document elements (e.g. XML fragments), and at the scale of the Internet, the

World Wide Web.

This translates into 4 aspects that we address in this thesis. The four aspects

are as follows:

(i) Find data and sources of data. This is related for instance to our work

on archiving the French web. The two main issues are the definition of

the “frontier” of the French web, and the selection of valuable content to

archive. As we will see further in this thesis, the issue of selection to obtain

a reasonable level of “quality” of information is a key towards the success

of any automatic processing of web data.

(ii) Monitor these documents and data through time. This is related to previous

work on acquisition and refreshment of web data [79, 59]. Our work con-
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CHAPTER 1. INTRODUCTION

sists in understanding when documents changes, and what are the changes

that occur. To improve the quality of our results, we choose to use as much

as possible the structure of data: the structure of XML documents, and

the structure of web sites where documents are found. In the context of

documents from the web, a critical requirement is performance since it is

necessary to scale to the size of the web.

(iii) Extract knowledge on the changing contents of documents, or on their

changing metadata. This denotes the need to add semantic value to data

and to the changes of data. This problem is illustrated in the first part of

this thesis where our study on change detection analyzes various notions of

“quality” of results. These are for instance minimality of the delta results,

the support for move operations that enable a better identification of nodes

through time than insert and delete, and the support of constraints from the

DTDs in the spirit of database keys.

(iv) Extract knowledge on the changing relations between documents, or on the

changing collections of documents. This is a typical field of information re-

trieval, and previous work is abundant on the topic of analyzing collections

of documents [54, 62]. We propose a possible approach to this problem in

the second part of the thesis by presenting an algorithm that computes the

“importance” of pages on the web, and that adapts to the changes of the

web.

Macroscopic changes. Let us first consider the macroscopic changes. The web

is a large source of documents, and we believe that the change of its content is

very valuable for several reasons. First, because new documents are added that

continuously enrich the available knowledge. Second, because updates of pieces

of information are made precisely to correct and improve the previous data. Third,

because these changes that are made are information them-selves. For instance,

each time a stock value changes, this is information.

Moreover, there are other reasons why it is important to learn about changes

on the web.
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One for instance is performance. The web contains today more than 4 billion

pages, and, for instance, to monitor the web we must focus processing resources in

the most efficient manner. This implies for instance that no redundant processing

should be performed, and in particular we should focus on processing changing

data and not all the data.

Another reason to learn about changes is that web pages tend to change and

disappear very quickly. It is very important to have the possibility to find some

information as it was at some previous time.

In a few words, we should say that the focus on changes on the web is neces-

sary to improve (i) the performance of applications, (ii) the quality of information.

Version management on the web is also necessary because it ensures that history

can not be rewritten.

Microscopic changes. Let us now consider the microscopic changes, i.e.

changes at the document level. The main aspect of change-control in documents

is studying differences between several versions of a document. For instance,

addresses that are modified in some address book.

Our work is focused on XML documents. Extensible Mark-up Language

(XML) is a simple, very flexible text format derived from SGML (ISO8879). In

the spirit of SGML and HTML, tags (e.g. <name>Greg</name>) are used to

give a tree structure to the document. Today, XML [102] is a de facto standard

for exchanging data both in academia and in industry. We also believe that XML

is becoming a standard to model stored data.

With XML, documents are represented using a precise schema. However, as

opposed to usual (e.g. relational) databases, the schema does not need to be strictly

defined as a prerequisite to handle the data. The advantage of XML compared to

flat text files is that it adds information that gives a structure to data. For instance,

when a journalist writes an article to summarize a soccer game, the labeling struc-

ture of XML states for each sentence, and for each word, whether it is the name

of a player, or the name of the referee, or the town where the game took place.

Then, it is possible to write programs that retrieve this information and process

user queries, for instance finding each soccer player that scored a goal in Stade de

France.

12



CHAPTER 1. INTRODUCTION

XML and semi-structured data form an essential component to enable a more

efficient distribution of knowledge and services on the web. The success of XML,

which seems certain at this point, marks the beginning of a new era for knowledge

and services on the Internet.

We present our work to detect, store and monitor changes on XML documents.

To do so, we present an algorithm to detect changes in XML documents, and we

present a model for representing them in XML. We also present a comparative

study on this topic.

An important aspect is to consider the quality of results and the semantics of

data. Consider for instance a document representing the list of employees and

their phone numbers in some company. The differences between two versions of

the document may be interpreted in different ways. For instance, the department

of human resources might track the changing phone numbers for each employee.

On the other hand, the maintenance department is interested in the list of phones,

and their technical application considers that for some phone, it is the name of the

employee that changes. The two interpretations lead to different representations of

changes, although the actual changes in the document may be the same. It is then

necessary to integrate the semantics of data and their changes in the algorithms

and models.

In this thesis, we will consider both the performance and quality for change-

control of semi-structured data.

Note that change-control of XML documents comes down to comparing two

versions of some XML document. This same technology may be used to find dif-

ferences (and similarities) between two different XML documents. For instance,

what are the differences between the vendor’s XML description of two car models.

Organization. The thesis is organized in 3 parts as follows:

In the first part, we present our work in change-control at the microscopic

scale, that is inside XML documents. First, we present an algorithm that, given

two versions of a document, detects changes that occurred between them, and

constructs a delta that transforms one version of the document into the other. Then,

we propose a formal model for representing changes of XML documents in XML.

In the third chapter, we present a state of the art in the field of change detection and
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representation, namely a comparative study that we conducted recently. Finally,

we will present our work in the context of the Xyleme project. This work consists

in integrating the work on XML document changes into a web crawler to be able

to monitor document changes on the web.

In the second part, we present our work on change-control at the macroscopic

scale, that is at the scale of the web. Indeed, we will first study the graph of the

web, and show an algorithm that can be used to compute the importance of pages

online, i.e. while the web is crawled. It adapts dynamically to the changes of

the graph of the web. Then, we illustrate this topic by describing some work in

the context of “web archiving”. The web is a more and more valuable source of

information and this leads national libraries (e.g. the French national library) and

other organizations to archiving (portions of) the web. This is in the spirit of their

work on other medias, for instance archiving books and newspapers.

The last part is a conclusion.
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Chapter 2

Preliminaries

To further understand the context of this work, we first present some fundamental

notions that will be used through this thesis. In particular, we give an overview

of XML and DTDs and mention briefly XMLSchema, SOAP and Web Services.

More insights may be found in [3, 104, 105].

XML

XML is a format to represent semi-structured data. Semi-structured data may be

defined by comparing “structured” data and “un-structured” data.

� On one hand, un-structured data is typically represented by some text. For

instance, consider a letter from your bank containing important account in-

formations. Understanding the text itself is necessary to find the relevant

information. For instance, if the letter is written in Japanese, I would not

be able to find any information. It is a difficult task to create programs that

understand and use such data.

� On the other hand, structured data is for instance the data of a relational

database. It is typically in tables, with rows and columns, where each cell

contains a precise piece of information. In a bank account statement there

is typically a table with rows for each banking operation, and columns for

the transaction date, the amount of money, the operation descriptor, and the
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account balance. It is easy to write programs that use the data, for instance

a program that computes how much money is spent each week on average.

The problem is that it is not always easy to put data in a structured format,

for instance it would be difficult to put a news article in a relational database.

Semi-structured data lay somewhere in between. In this thesis, we focus on a

particular kind of semi-structured data model, namely XML.

An XML document is represented as a text file with opening and closing tags

that give a tree structure to the data. XML does not use predefined tags. It has the

advantage of text files that it is easy to represent a document as an XML document.

It has the advantage of structured data that there is a structure that can be used to

validate a document (see DTD and XMLSchema [104]), to query the content and

to give a specific semantic to each piece of data [103]. A typical example is as

follows:

<letter>

<from> A.B.C. Bank

<address>

100 El Camino Real, 94025 Menlo Park

</address>

</from>

<to>

Jacques Dupond

<address>

21 Edgewater Bvd, 94404 Foster City

</address>

</to>

<date>

10/10/2003

</date>

<body>

Dear Sir,

Due to ...

And ...
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CHAPTER 2. PRELIMINARIES

We inform you that your account has been charged with <amount op-

eration="mensual-fee">$8</amount>

...

</body>

</letter>

An essential aspect of XML is the tree structure of XML data. Indeed, while

the textual content is represented at the leaves of the tree, the internal nodes,

namely element nodes, represent the structure of the data. They facilitate the us-

age of data and the understanding of its precise semantics. Applications and users

can more easily understand the meaning of each piece of the document. Moreover,

when the document changes, applications and users can more easily understand

the meaning of these changes.

XML documents may be easily queried. For instance: find the name and

address of all customers to which we sent two letters for charging the mensual fee

the same month. This is not easy with textual data.

Note that this kind of query was already possible with relational databases.

However, the main problem is that it is difficult to organize the contents and know-

ledge of a company in a relational database, because each piece of information is

slightly different from the others, and structured databases require very precise

formats and schema for their data.

XML has been adopted as a standard format for exchanging data. The coming

of Web Services, WSDL and SOAP based on XML, confirms the acceptance of

XML. We believe that XML is also becoming a standard for storing data, although

this is somewhat more controversial.

XML vs. HTML. The HTML format is the most common format for displaying

web pages. HTML stands for Hyper Text Markup Language [104, 105]. An

HTML file is a text file containing small markup tags. The markup tags tell the

web browser how to display the page.

The extreme simplicity of HTML and its flexibility has played an important

role in the success and the rapid development of the Internet by enabling quick

design of web pages. In particular, web browsers have been very tolerant towards
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syntactical and structural errors in the HTML source of the web pages they dis-

play. The undesired consequence is that most HTML documents have no real

structure and can not be used by data-intensive applications. Today, as we will see

later in this thesis, the web is much like HTML: it is a large container of know-

ledge, with little or no structure and no explicit way to find valuable information

among a wide volume of “junk” [6].

While HTML enables a graphical representation of web pages that permits

humans to easily read documents, it does not facilitate the use and exchange of

data by programs.

XSL. Although this is not necessary for the comprehension of this thesis, we

mention briefly the role played by XSL towards the XML web. The Extensible

Stylesheet Language, XSL, is a language for expressing style sheets [104, 105].

Because XML does not use predefined tags (we can use any tags we want), the

meanings of these tags are not understood: <table> could mean an HTML table,

a piece of furniture, or something else. Therefor, a generic browser does not know

a priori how to display an XML document. Some extra information is needed to

describe how the document should be displayed; and that is XSL.

For instance, XSL may be used to define the font style and size for the title of

a document, a specific font and layout for a part of some document, and so on. We

have mentioned previously that most web pages on the web are HTML. However,

the content is in fact more and more stored as XML or structured data, and is often

exported as XML from a database. Then, XSL stylesheets are used on the server,

and using their layout and presentation information, the content is published as

HTML pages on the web.

Other languages can be used to display HTML pages based on program data

or database queries. The most popular are PhP, Sun JSP, Microsoft ASP.

XSLT XSL Transformations, XSLT, is a language for transforming XML doc-

uments into other XML documents. XSLT is designed for use as part of XSL,

which is a stylesheet language for XML. In addition to XSLT, XSL includes an

XML vocabulary for specifying formatting. XSL specifies the styling of an XML

document by using XSLT to describe how the document is transformed into an-
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CHAPTER 2. PRELIMINARIES

other XML document that uses the formatting vocabulary. XSLT is also designed

to be used independently of XSL. However, XSLT is not intended as a completely

general-purpose XML transformation language. Rather it is designed primarily

for the kinds of transformations that are needed when XSLT is used as part of

XSL.

DTD and XMLSchema. The purpose of a Document Type Definition (see

DTD [104]) is to define the legal building blocks of an XML document [105].

It defines the document structure with a list of legal elements, more precisely it

specifies the legal tags and the structure of the elements of these tags. With DTD,

each XML file may carry a description of its own format with it. In particular,

groups of people may agree to use a common DTD for exchanging data. Applica-

tions can use a standard DTD to verify that the data they receive from the outside

world is valid. One may also use a DTD to validate his own data.

An important aspect of DTDs that we use in Chapter 3 is the possibility to

define ID attributes. Attributes are pieces of information (a name and a value) that

are attached to element nodes of XML documents. Specifying in the DTD that an

attribute is an ID Attribute indicates that the value of this specific attribute is

a unique identifier for the element node. This is in the spirit of keys in databases.

The purpose of an XML Schema is to define the legal building blocks of an

XML document, just like a DTD. It is likely that very soon XML Schemas will be

used in most web applications as a replacement for DTDs. Here are some reasons:

� XML Schemas propose a richer typing than DTDs,

� XML Schemas are written in XML,

� XML Schemas support data types,

� XML Schemas support namespaces and other features that facilitate their

use in complex settings.

XPath XPath is a syntax for accessing parts of an XML document. More pre-

cisely, XPath uses path expressions to identify nodes in an XML document. Some
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simple XPath expressions look very much like the expressions you see when you

work with a computer file system:

company/listOfEmployees/employee/name

Web Services: SOAP, WSDL. Briefly, Web Services offer the possibility to ex-

ecute remote function calls on the Internet. SOAP is the remote call specification,

and WSDL in the method interface specification.

SOAP is a lightweight XML-based protocol for exchange of information in a

decentralized, distributed environment. The advantage of SOAP compared to ex-

isting technologies (such as RPC, DCOM, CORBA) is that it uses HTTP and thus

it is easily integrated in a large-scale web environment with firewalls and proxys.

SOAP provides a way to communicate between applications running on different

operating systems, with different technologies and programming languages.

WSDL stands for Web Services Description Language. WSDL is an XML

format for describing network services. In the spirit of CORBA Interface De-

scription Language [87], it specifies the operations (or methods) of the service. It

also specifies the messaging protocol, mainly SOAP, as well as the web location

(URL) of the service.
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Chapter 3

An XML diff algorithm: XyDiff

Abstract. We present a diff algorithm for XML data. This work is motivated

by the support for change control in the context of the Xyleme project that is in-

vestigating dynamic warehouses capable of storing massive volume of XML data.

Because of the context, our algorithm has to be very efficient in terms of speed

and memory space even at the cost of some loss of “quality”. Also, it considers,

besides insertions, deletions and updates (standard in diffs), a move operation on

subtrees that is essential in the context of XML. Intuitively, our diff algorithm uses

signatures to match (large) subtrees that were left unchanged between the old and

new versions. Such exact matchings are then possibly propagated to ancestors

and descendants to obtain more matchings. It also uses XML specific informa-

tion such as ID attributes. We provide a performance analysis of the algorithm.

We show that it runs in average in linear time vs. quadratic time for previous

algorithms. We present experiments on synthetic data that confirm the analysis.

Since this problem is NP-hard, the linear time is obtained by trading some qual-

ity. We present experiments (again on synthetic data) that show that the output of

our algorithm is reasonably close to the “optimal” in terms of quality. Finally we

present experiments on a small sample of XML pages found on the Web.

In the context of the Xyleme project [117], some preliminary work on XML diff

was performed by Amélie Marian. When she left for Columbia University, I took

over the work on XML diff. This section presents my algorithm for XML diff. It

was clearly influenced by original ideas by Abiteboul and Marian.
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The algorithm has been presented in [35].

3.1 Introduction

Users are often not only interested in the current value of data but also in changes.

Therefore, there has been a lot of work around diff algorithm for all kinds of data.

With the Web and standards such as HTML and XML, tree data is becoming

extremely popular which explains a renewed interest for computing changes in

tree-structured data. A particularity of the Web is the huge volume of data that

has to be processed. For instance, in the Xyleme project [117, 119], we were

lead to compute the diff between the millions of documents loaded each day and

previous versions of these documents (when available). This motivates the study

of an extremely efficient, in terms of speed and memory space, diff algorithm for

tree data.

As mentioned above, the precise context for the present work is the Xyleme

project [119] that is studying and building a dynamic World Wide XML warehouse,

i.e., a data warehouse capable of storing massive volume of XML data. XML, the

new standard for semistructured data exchange over the Internet [102, 3], allows

to support better quality services and in particular allows for real query languages

[45, 91] and facilitates semantic data integration. In such a system, managing

changes is essential for a number of reasons ranging from traditional support for

versions and temporal queries, to more specific ones such as index maintenance

or support for query subscriptions. These motivations are briefly considered in

Section 3.2.

The most critical component of change control in Xyleme is the diff mod-

ule that needs to be extremely efficient. This is because the system permanently

receives XML data from the Web (or internal) crawlers. New versions of the doc-

uments have to be compared to old ones without slowing down the whole system.

Observe that the diff we describe here is for XML documents. It can also be

used for HTML documents by XML-izing them, a relatively easy task that mostly

consists in properly closing tags. However, the result of diff for a true XML docu-

ment is semantically much more informative than for HTML. It includes semantic

pieces of information such as the insertion of a new product in a catalog.
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Intuitively, our algorithm works as follows. It tries to detect (large) subtrees

that were left unchanged between the old and new versions. These are matched.

Starting from there, the algorithm tries to match more nodes by considering an-

cestors and descendants of matched nodes and taking labels into consideration.

Our algorithm also takes advantage of the specificities of XML data. For instance,

it knows of attributes and attribute updates and treat them differently from ele-

ment or text nodes. It also takes into account ID attributes to match elements.

The matching of nodes between the old and new version is the first role of our

algorithm. Compared to existing diff solutions such as [56, 78], our algorithm is

faster and has significantly better matchings.

The other role of our algorithm is the construction of a representation of the

changes using a delta. We use the delta representation of [69] that is based on

inserts, deletes, updates and moves. For completeness, we present it in Section

3.4. Given a matching of nodes between the two documents, a delta describes a

representation of changes from the first to the second. A difficulty occurs when

children of a node are permuted. It is computationally costly to find the minimum

set of move operations to order them.

We show first that our algorithm is “correct” in that it finds a set of changes

that is sufficient to transform the old version into the new version of the XML doc-

ument. In other words, it misses no changes. Our algorithm runs in O�n � log�n��

time vs. quadratic time for previous algorithms. Indeed, it is also noticeable that

the running time of our algorithm significantly decreases when documents have

few changes or when specific XML features like ID attributes are used. In Sec-

tion 3.3, we recall that the general problem is NP-hard. Therefore, to obtain these

performance we have to trade-in something, an ounce of “quality”. The delta’s we

obtain are not “minimal”. In particular, we may miss the best match and some sets

of move operations may not be optimal. It should be observed that any notion of

minimality is somewhat artificial since it has to rely on some arbitrary choice of

a distance measure. We present experiments that show that the delta’s we obtain

are of very good quality.

There has been a lot of work on diff algorithms for strings, e.g., [65, 40, 106],

for relational data, e.g., [64], or even for tree data, e.g., [108, 25]. The originality
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of our work comes from the particular nature of the data we handle, namely XML,

and from strict performance requirements imposed by the context of Xyleme.

Like the rest of the system, the diff and the versioning system are implemented

in C++, under Linux, with Corba for communications. Today, it is freely available

on the Web in open-source [34]. It has been used by several groups over the world.

In particular, it is included in the industrial product of Xyleme SA [119].

We performed tests to validate our choices. We briefly present some experi-

mentation. The results show that the complexity of our algorithm is indeed that

determined by the analysis, i.e., quasi linear time. We also evaluate experiment-

ally the quality of the diff. For that, we ran it on synthetic data. As we shall see,

the computed changes are very close in size to the synthetic (perfect) changes. We

also ran it on a small set of real data (versions of XML documents obtained on the

web). The size is comparable to that of the Unix Diff. This should be viewed as

excellent since our description of changes typically contains much more informa-

tion than a Unix Diff. We also used the diff to analyze changes in portions of the

web of interest, e.g., web sites described as XML documents (Section 3.6).

We present motivations in Section 3.2 and consider specific requirements for

our diff. A description of the change model of [69] is given in Section 3.4. We

mention previous diff algorithms in Section 3.3. Note that an extensive state of

the art is presented in Chapter 5, where we conduct a benchmark for XML change

detection. In Section 3.5, we present the XyDiff algorithm, and its analysis. Meas-

ures are presented in Section 3.6. The last section is a conclusion.

3.2 Motivations and requirements

In this section, we consider motivations for the present work. Most of these mo-

tivations for changes detection and management are similar to those described in

[69].

As mentioned in the introduction, the role of the diff algorithm is to provide

support for the control of changes in a warehouse of massive volume of XML

documents. Detecting changes in such an environment serves many purposes:
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� Versions and Querying the past: One may want to version a particular

document [69], (part of) a Web site, or the results of a continuous query.

This is the most standard use of versions, namely recording history. Later,

one might want to ask a query about the past, e.g., ask for the value of some

element at some previous time, and to query changes, e.g., ask for the list

of items recently introduced in a catalog. Since the diff output is stored as

an XML document, namely a delta, such queries are regular queries over

documents.

� Learning about changes: The diff constructs a possible description of the

changes. It allows to update the old version Vi and also to explain the

changes to the user. This is in the spirit, for instance, of the Information and

Content Exchange, ICE [110, 57, 61]. Also, different users may modify the

same XML document off-line, and later want to synchronize their respect-

ive versions. The diff algorithm could be used to detect and describe the

modifications in order to detect conflicts and solve some of them [39].

� Monitoring changes: We implemented a subscription system [84] that

allows to detect changes of interest in XML documents, e.g., that a new

product has been added to a catalog. To do that, at the time we obtain a new

version of some data, we diff it and verify if some of the changes that have

been detected are relevant to subscriptions. Related work on subscription

systems that use filtering tools for information dissemination have been

presented in [120, 10].

� Indexing: In Xyleme, we maintain a full-text index over a large volume of

XML documents. To support queries using the structure of data, we store

structural information for every indexed word of the document [8]. We are

considering the possibility to use the diff to maintain such indexes.

To offer these services, the diff plays a central role in the Xyleme system.

Consider a portion of the architecture of the Xyleme system in Figure 3.1, seen in

a change-control perspective. When a new version of a document V �n� is received

(or crawled from the web), it is installed in the repository. It is then sent to the diff

module that also acquires the previous version V �n� �� from the repository. The
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diff modules computes a delta, i.e., an XML document describing the changes.

This delta is appended to the existing sequence of delta for this document. The

old version is then possibly removed from the repository. The alerter is in charge

of detecting, in the document V �n� or in the delta, patterns that may interest some

subscriptions [84]. Efficiency is here a key factor. In the system, one of the web

crawlers loads millions of Web or internal pages per day. Among those, we expect

many to be XML. The diff has to run at the speed of the indexer (not to slow down

the system). It also has to use little memory so that it can share a PC with other

modules such as the Alerter (to save on communications).

Diff Alerter
V(n)

V(n)

Indexer

V(n-1)

System
Subscription

Repository Delta(V(n-1), V(n))

XML Loader

Web Crawler

Figure 3.1: Xyleme-Change architecture

These performance requirements are essential. The context also imposes re-

quirements for the deltas: they should allow (i) reconstructing an old version, and

(ii) constructing the changes between some versions n and n�. These issues are ad-

dressed in [69]. The diff must be correct, in that it constructs a delta corresponding

to these requirements, and it should also satisfy some quality requirements. Typ-

ically, quality is described by some minimality criteria. More precisely, the diff

should construct a minimum set of changes to transform one version into the next

one. Minimality is important because it captures to some extent the semantics that

a human would give when presented with the two versions. It is important also in
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that more compact deltas provide savings in storage. However, in our context, it

is acceptable to trade some (little) minimality for better performance.

We will see that using specificities of the context (in particular the fact that

documents are in XML) allows the algorithm to obtain changes that are close

to the minimum and to do that very efficiently. The specific aspects of XyDiff

algorithm are as follows:

� Our diff is, like [24, 25], tailored to tree data. It also takes advantage of spe-

cificities of XML such as ID attributes defined in the DTD, or the existence

of labels.

� The diff has insert/delete/update operations as in other tree diff such as [25],

and it also supports a move operation as in [24]. The move allows to move

an XML (possibly large) subtree.

3.3 State of the art

In a standard way, the diff tries to find a minimum edit script between the versions

at time ti�� and ti. The basis of edit distances and minimum edit script is the string

edit problem [11, 65, 40, 106]. Insertion and deletion correspond to inserting and

deleting a symbol in the string, each operation being associated with a cost. Now

the string edit problem corresponds to finding an edit script of minimum cost that

transforms a string x into a string y. A most standard algorithm for the problem

works as follows. The solution is obtained by considering prefixes substrings of

x and y up to the i-th symbol, and constructing a directed acyclic graph (DAG) in

which path cost�x����i� � y����j�� is evaluated by the minimal cost of these three

possibilities:

cost�delete�x�i��� � cost�x����i � ��� y����j��

cost�insert�y�j��� � cost�x����i�� y����j � ���

cost�subst�x�i�� y�j��� � cost�x����i � ��� y����j � ���

Note that for example subst�x�i�� y�j�� is zero when the symbols are equals. The

space and time complexity are O�jxj � jyj�.
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XML documents can represented as strings. Thus, string detection algorithm

may be applied to XML documents based on their string representation. But this

does not take into account the tree structure of the document. It is then possible to

do some post-processing of the result in order to obtain a delta that is compatible

with the tree structure of XML. However, it is preferable to consider specific al-

gorithms for change detection on tree structures, since they use the knowledge of

the structure of the document to improve their efficiency and the quality of their

results.

Kuo-Chung Tai [99] gave a definition of the edit distance between ordered

labeled tree and the first non-exponential algorithm to compute it. The insert

and delete operations are in the spirit of the operations on strings: deleting a

node means making its children become children of the node’s parent. Inserting

is the complement of deleting. Given two documents D� and D�, the resulting

algorithm has a complexity of O�jD�j � jD�j � depth�D��� � depth�D���� in

time and space. Lu’s algorithm [68] uses another edit based distance. The idea

underlying this algorithm is, when a node in subtree D� matches with a node in

subtree D�, to use the string edit algorithm to match their respective children.

In Selkow’s variant [97], insertion and deletion are restricted to the leaves of

the tree. Thus, applying Lu’s algorithm in the case of Selkow’s variant results

in a time complexity of O�jD�j � jD�j�. Depending on the considered tree data,

this definition may be more accurate. It is used for example, in Yang’s [121]

algorithm to find the syntactic differences between two programs. Due to XML

structure, it is clear that the definition is also accurate for XML documents. An

XML Document structure may be defined by a DTD, so inserting and deleting a

node and changing its children level would change the document’s structure and

may not be possible. However, inserting and deleting leaves or subtrees happens

quite often, because it corresponds to adding or removing objects descriptions,

e.g. like adding or removing people in an address book.

Recently, Sun released an XML specific tool named DiffMK [78] that com-

putes the difference between two XML documents. This tool is based on the Unix

standard diff algorithm, and uses a list description of the XML document, thus

losing the benefit of the tree structure of XML.
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We do not consider here the unordered tree problem [125, 98] nor the tree

alignment [60] problems.

Perhaps the closest in spirit to our algorithm is LaDiff or MH-Diff [25, 24]. It

is also designed for XML documents. It introduces a matching criteria to compare

nodes, and the overall matching between both versions of the document is decided

on this base. The faster version of the matching algorithm uses longest common

subsequence computations for every element node starting from the leaves of the

document. Its cost is in O�n � e � e�� where n is the total number of leaf nodes,

and e a weighted edit distance between the two trees. More precisely, e is the sum

of the number of deleted and inserted subtrees, and the total size of subtrees that

moved for the shortest edit script.

Then an edit script conforming to the given matching is constructed in a cost of

O�n � d� where n is the total number of nodes, and d the total number of children

moving within the same parent. Like most other algorithms, the worst case cost,

obtained here considering that large subtrees have moved, is quadratic in the size

of the data.

The main reason why few diff algorithm supporting move operations have

been developed earlier is that most formulations of the tree diff problem are

NP-hard [126, 24] (by reduction from the ’exact cover by three-sets’). MH-Diff,

presented in [24] provides an efficient heuristic solution based on transforming

the problem to the edge cover problem, with a worst case cost in inO�n��log�n��.

Our algorithm is in the spirit of Selkow’s variant, and resembles Lu’s al-

gorithm. The differences come from the use of the structure of XML documents.

In Lu’s algorithm, once a node is matched, we try to match its children using

the string algorithm. For this, children are identified using their label. But this

would not apply in practice on XML documents, as many nodes may have the

same label. So we use a signature computed over the children’s subtree. But then,

children may not be matched only because of a slight difference in their subtree,

so we had to extend our algorithm by taking into consideration those children and

their subtree and matching part of it if possible.

Using this edit definition, we could add the support of move operations. Note

that a move operation can be seen as the succession of a deletion and an inser-

tion. However it is different in that we consider the cost of move to be much less
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than the sum of deleting and inserting the subtree. Thus it is clear that previous

algorithm wouldn’t compute the minimal edit script as we defined it.

Last but not least, our algorithm goal is slightly different from previous al-

gorithms in that for performance reasons, we do not necessarily want to compute

the very minimal edit script.

3.4 Brief overview of the change representation

model

In this section, we present some aspects of the change model [69] that we use in

the present chapter. The presentation will be very brief and omit many aspects of

the complete model. A complete representation is given in [69] and in Chapter 4.

The simple model for XML data we consider roughly consists of ordered trees

(each node may have a list of children) [3]. Nodes also have values (data for text

nodes and label for element nodes). We will briefly mention later some specific

treatment for attributes. The starting point for the change model is a sequence of

snapshots of some XML data. A delta is an XML document that represents the

changes between two consecutive snapshot versions of an XML document. It uses

persistent node identifiers, namely XIDs, in a critical way. We consider next the

persistent identification of XML nodes, and then the deltas, a novel representation

of changes in XML documents.

Persistent identification of nodes The persistent identification of nodes is the

basis of the change representation for XML documents we use. Persistent iden-

tifiers can be used to easily track parts of an XML document through time. We

start by assigning to every node of the first version of an XML document a unique

identifier, for example its postfix position. When a new version of the document

arrives, we use the diff algorithm to match nodes between the two versions. As

previously reported, matched nodes in the new document thereby obtain their (per-

sistent) identifiers from their matching in the previous version. New persistent

identifiers are assigned to unmatched nodes. Given a set of matchings between

two versions of an XML document, there are only few deltas that can describe the
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corresponding changes. The differences between these deltas essentially come

from move operations that reorder a subsequence of child nodes for a given par-

ent [69]. More details on the definition and storage of our persistent identifiers,

that we call XIDs, are given in [69]. The XID-map is a string attached to some

XML subtree that describes the XIDs of its nodes.

Representing changes The delta is a set of the following elementary operations:

(i) the deletion of subtrees; (ii) the insertion of subtrees; (iii) an update of the value

of a text node or an attribute; and (iv) a move of a node or a part of a subtree. Note

that it is a set of operations. Positions in operations are always referring to posi-

tions in the source or target document. For instance, move�m�n� o� p� q� specifies

that node o is moved from being the n-th child of node m to being the q-th child of

p. The management of positions greatly complicates the issue comparing to, say,

changes in relational systems. Note also that the model of change we use relies

heavily on the persistent identification of XML nodes. It is based on “completed”

deltas that contain redundant information. For instance, in case of updates, we

store the old and new value. Indeed, a delta specifies both the transformation from

the old to the new version, but the inverse transformation as well. Nice mathemat-

ical and practical properties of completed deltas are shown in [69]. In particular,

we can reconstruct any version of the document given another version and the cor-

responding delta, and we can aggregate and inverse deltas. Finally, observe that

the fact that we consider move operations is a key difference with most previous

work. Not only is it necessary in an XML context to deal with permutations of the

children of a node (a frequently occurring situation) but also to handle more gen-

eral moves as well. Moves are important to detect from a semantic viewpoint. For

example consider the XML document in Figure 3.2 (first version) and Figure 3.3

(second version).

Its tree representation is given in the left part of Figure 3.4. When the docu-

ment changes, Figure 3.4 shows how we identify the subtrees of the new version

to subtrees in the previous version of the document. This identification is the main

goal of the diff algorithm we present here. Once nodes from the two versions have

been matched, it is possible to produce a delta. The main difficulty, shown in

Section 3.5, is to manage positions. Assuming some identification of nodes in the
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<Category>
<Title>Digital Cameras</Title>
<Discount>
<Product>
<Name> tx123 </Name>
<Price> $499 </Price>

</Product>
</Discount>
<NewProducts>
<Product>
<Name> zy456 </Name>
<Price> $799 </Price>

</Product>
</NewProducts>

</Category>

Figure 3.2: XML Document Example (first version)

<Category>
<Title>Digital Cameras</Title>
<Discount>
<Product>
<Name> zy456 </Name>
<Price> $699 </Price>

</Product>
</Discount>
<NewProducts>
<Product>
<Name> abc </Name>
<Price> $899 </Price>

</Product>
</NewProducts>

</Category>

Figure 3.3: XML Document Example (second version)
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<delete XID="7" XID-map="(3-7)" parentXID="8" pos="1">
<Product>
<Name> tx123 </Name>
<Price> $499 </Price>

</Product>
</delete>

<insert XID="20" XID-map="(16-20)" parentXID="14" pos="1">
<Product>
<Name> abc </Name>
<Price> $899 </Price>

</Product>
</insert>

<move XID=13 fromParent="14" fromPos="1"
toParent= "8" toPos ="1" />

<update XID="11">
<old-value>
$799

</old-value>
<new-value>
$699

</new-value>
</update>

Figure 3.5: XML Delta Example

old version (namely postfix order in the example), the delta representing changes

from the old version to the new one may as in Figure 3.5.

It is not easy to evaluate the quality of a diff. Indeed, in our context, different

usages of the diff may use different criteria. Typical criteria could be the size of

the delta or the number of operations in it. Choices in the design of our algorithm

or in its tuning may result in different deltas, and so different interpretations of the

changes that happened between two versions.

3.5 The XyDiff Algorithm

In this section, we introduce a novel algorithm that computes the difference

between two XML documents. Its use is mainly to match nodes from the two

documents and construct a delta that represents the changes between them. We
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provide a cost analysis for this algorithm. A comparison with previous work is

given in Section 3.3. Intuitively, our algorithm finds matchings between common

large subtrees of the two documents and propagate these matchings. XyDiff

uses both Bottom-Up and Top-Down propagation of matchings. Matchings are

propagated bottom-up and (most of the time), but only lazily down. This approach

was preferred to other approaches we considered because it allows to compute the

diff in linear time. We next give some intuition, then a more detailed description

of our algorithm.

3.5.1 Intuition

To illustrate the algorithm, suppose we are computing the changes between XML

document D� and XML document D�, D� being the most recent version.

The starting point of the algorithm is to match the largest identical parts of

both documents. So we start by registering in a map a unique signature (e.g. a

hash value) for every subtree of the old document D�. If ID attributes are defined

in the DTD, we will match corresponding nodes according to their value, and

propagate these matching in a simple bottom-up and top-down pass.

Then we consider every subtree in D�, starting from the largest, and try to find

whether it is identical to some of the registered subtrees of D�. If so, we match

both subtrees. (This results in matching every node of the subtree in D� with the

respective node of the subtree in D�.) For example, in Figure 3.4, we do not find

an identical subtree for the tree starting at Category, but the subtree starting at

Title is matched.

We can then attempt to match the parents of two matched subtrees. We do that

only if they have the same labels. Clearly, there is a risk of forcing wrong matches

by doing so. Thus, we control the propagation of a matching bottom-up based on

the length of the path to the ancestor and the weight of the matching subtrees. For

example, a large subtree may force the matching of its ancestors up to the root,

whereas matching a small subtree may not even force the matching of its parent.

The fact that the parents have been matched may then help detect matchings

between descendants because pairs of such subtrees are considered as good can-

didates for a match. The matching of large identical subtrees may thus help match-

ing siblings subtrees which are slightly different. To see an example, consider Fig-

ure 3.4. The subtree Name/zy456 is matched. Then its parent Product is matched

too. The parents being matched, the Price nodes may eventually be matched, al-
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though the subtrees are different. (This will allow detecting that the price was

updated.) When both parents have a single child with a given label, we propagate

the match immediately. (It is possible to use data structures that allow detecting

such situations at little cost.) Otherwise, we do not propagate the matching imme-

diately (lazy down). Future matchings (of smaller subtrees) may eventually result

in matching them at little cost.

The lazy propagation downward of our algorithm is an important distinction

from previous work on the topic. Note that if the two matched nodes have m and

m� children with the same label �, we have m�m� pairs to consider. Attempting

this comparison on the spot would result in a quadratic computation.

We start by considering the largest subtrees in D�. The first matchings are

clear, because it is very unlikely that there is more than one large subtree in D�

with the same signature. However it is often the case that when the algorithm goes

on and considers smaller subtrees, more than one subtrees of D� are identical to

it. We say then that these subtrees are candidates to matching the considered

subtree of D�. At this point, we use the precedent matches to determines the best

candidate among them, by determining which is closest to the existing matches.

Typically, if one of the candidate has its parent already matched to the parent of

the considered node, it is certainly the best candidate. And thanks to the order in

which nodes are considered, the position among siblings plays an important role

too.

When this part of the algorithm is over, we have considered and perhaps

matched every node of D�. There are two reasons why a node would have no

matching: either because it represents new data that has been inserted in the

document, or because we missed matching it. The reason why the algorithm

failed may be that at the time the node was considered, there was no sufficient

knowledge or reasons to allow a match with one of its candidates. But based

on the more complete knowledge that we have now, we can do a “peephole”

optimization pass to retry some of the rejected nodes. Aspects on this bottom-up

and top-down simple pass are considered in Section 3.5.3.

In Figure 3.4, the nodes Discount has not been matched yet because the con-

tent of its subtrees has completely changed. But in the optimization phase, we see

that it is the only subtree of node Category with this label, so we match it.

Once no more matchings can be obtained, unmatched nodes in D� (resp. D�)

correspond to inserted (resp. deleted) nodes. For instance, in Figure 3.4, the

38



CHAPTER 3. AN XML DIFF ALGORITHM: XYDIFF

subtrees for products tx123 and abc could not be matched and so are respectively

considered as deleted and inserted data. Finally, a computationally non negligible

task is to consider each matching node and decide if the node is at its right place,

or whether it has been moved.

3.5.2 Detailed description

The various phases of our algorithm are detailed next.

Phase 1 (Use ID attributes information): In one traversal of each tree, we

register nodes that are uniquely identified by an ID attribute defined in the DTD of

the documents. The existence of ID attribute for a given node provides a unique

condition to match the node: its matching must have the same ID value. If such a

pair of nodes is found in the other document, they are matched. Other nodes with

ID attributes can not be matched, even during the next phases. Then, a simple

bottom-up and top-down propagation pass is applied. Note that if ID attributes

are frequently used in the documents, most of the matching decision have been

made during this phase.

Phase 2 (Compute signatures and order subtrees by weight): In one tra-

versal of each tree, we compute the signature of each node of the old and new

documents. The signature is a hash value computed using the node’s content, and

its children signatures. Thus it uniquely represents the content of the entire sub-

tree rooted at that node. A weight is computed simultaneously for each node. It

is the size of the content for text nodes and the sum of the weights of children for

element nodes.

We construct a priority queue designed to contain subtrees from the new doc-

ument. The subtrees are represented by their roots, and the priority is given by

the weights. The queue is used to provide us with the next heaviest subtree for

which we want to find a match. (When several nodes have the same weight, the

first subtree inserted in the queue is chosen.) To start, the queue only contains the

root of the entire new document.

Phase 3 (Try to find matchings starting from heaviest nodes): We remove

the heaviest subtree of the queue, e.g. a node in the new document, and construct

a list of candidates, e.g. nodes in the old document that have the same signature.

From these, we get the best candidate (see later), and match both nodes. If there

is no matching and the node is an element, its children are added to the queue.

If there are many candidates, the best candidate is one whose parent matches the
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v’v

Z     B    C    A    D    E    F   Z A    B   C   D    X   E    Y   F 

Figure 3.6: Local moves

reference node’s parent, if any. If no candidate is accepted, we look one level

higher. The number of levels we accept to consider depends on the node weight.

When a candidate is accepted, we match the pair of subtrees and their ancest-

ors as long as they have the same label. The number of ancestors that we match

depends on the node weight.

Phase 4 (Optimization: Use structure to propagate matchings): We tra-

verse the tree bottom-up and then top-down and try to match nodes from the old

and new documents such that their parents are matching and they have the same

label. This propagation pass significantly improves the quality of the delta and

more precisely avoids detecting unnecessary insertions and deletions. The main

issue of this part is to avoid expensive computations, so specific choices are ex-

plained in Section 3.5.3.

Phase 5 (Compute the delta): This last phase can itself be split in 3 steps:

1. Inserts/Deletes/Updates: Find all unmatched nodes in the old/new doc-

ument, mark them as deleted/inserted; record the effect of their dele-

tion/insertion to the position of their siblings. If a text node is matched but

its content has changed, we will mark it as updated.

2. Moves: Find all nodes that are matched but with non matching parents.

These correspond to moves. Nodes that have the same parent in the new

document as in the old document may have been moved within these par-

ents. This is discussed further.

3. These operations are reorganized and the delta is produced. (Details omit-

ted.)

Remark. Let us now consider the issue of moves within the same parents. For

this, consider the example in Figure 3.6. Two nodes v (in the old version) and

v� (in the new version) have been matched. There may have been deletions, and
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also moves from v to some other part of the document, e.g. X and Y are in v but

not in v�. Conversely, there may be insertions and moves from some part of the

document to v�, e.g. two Z nodes are in v� but not in v. The other nodes are pairs

of nodes, where one node is in v, and its matching node in v �. For instance, the A

node in v matches the A node in v �.

However, they need not be in the same order. When they are not, we need to

introduce more moves to capture the changes. In Figure 3.6, the lines represent

matchings. There are 6 pairs of matched nodes in v and v �, corresponding to the

two sequences A�B�C�D�E� F (in v) and B�C�A�D�E� F (in v�).

To compute a minimum number of moves that are needed, it suffices to find

a (not necessarily unique) largest order preserving subsequence. Here such a

sequence is B�C�D�E� F in v that matches B�C�D�E� F in v � while preserving

the order. Then we need only to add move operations for the other pair of nodes,

here a single operation is sufficient: move�v�Atov ��A�. In XyDiff, we use a more

general definition and algorithm where the cost of each move corresponds to some

weight assigned to each node. This gives us the “minimum” set of moves.

However, finding the largest order preserving subsequence is expensive for

large sequences. More precisely the time and space cost is quadratic in the num-

ber of nodes (see Section 3.3). Thus, for performance reasons, we use a heuristic

which does not guarantee optimality, but is faster and proves to be sufficient in

practice. It is used when the number of children is large, and it works by cut-

ting it into smaller subsequences with a fixed maximum length (e.g. 50). We

apply on them the longest common subsequence algorithms(see Section 3.5.3),

and merge the resulting subsequences. The result is a subquence that is clearly a

common subsequence of the two original lists of children, although in general not

the longest one.

For instance, consider the two sequences A�B�C�D�E� F�G�H� I� J and

D�E� J� I� A�B� C� F�G�H . The two sequences are too large, and we apply the

quadratic subsequence algorithm only to their left and right half. More precisely,

we find the longest common subsequence of A�B�C�D�E and D�E� J� I� A,

which is D�E. Then we find the longest common subsequence of F�G�H� I� J

and B�C� F�G�H , which is F�G�H . By merging the two results, we obtain

D�E� F�G�H (length 5) as a possible solution. However, the longest common

subsequence would have been A�B�C� F�G�H (length 6).
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Tuning The details of our algorithm require some choices that we describe next.

We also consider the tuning of some parameters of the system.

First, we have to select an appropriate definition for weight. The choice of a

weight has impact on the accuracy of matches, and therefore both on the quality

and speed of the algorithm. We will see in Section 3.5.3, that the weight of an ele-

ment node must be no less than the sum of its children. It should also grow inO�n�

where n is the size of the document. We use ��sum�weight�children��. For text

nodes (i.e. leaves), we consider that when the text is large (e.g. a long description),

it should have more weight than a simple word. We use � � log�length�text�� as

a measure.

Also, when matching two subtrees, it is not easy to choose how far to go up

in matching ancestor nodes in the hierarchy. A too small distance would result in

missing matches whereas a too large one may generate erroneous matches (e.g.

matching many ascendant nodes because two insignificant texts are identical).

We note the maximum distance (depth) d. We want d to be greater for larger

subtrees, i.e. for some node, d grows with the weight W of the corresponding

subtree. For performance reasons (time complexity), we show in Section 3.5.3

that, if no specific index is used, the upper bound for d is in O�log�n�� W
W�

� where

W is the weight of the corresponding subtree, and W� the weight for the whole

document. However, this implies in general that for a given subtree with weight

W , the distance d decreases to zero when the document becomes larger (i.e. W�

goes to infinity). In 3.5.3 we explain how to use indexes to enable greater values

of d. More precisely, we use d � � � W
W�

in XyDiff, where h is the lower value

between log�n� and the depth of the root the subtree starting from the root of the

document. The �� value means that we use a level-1 index (see Section 3.5.3).

Other XML features We briefly mention here two other specific aspects of

XML that have impacts on the diff, namely attributes and DTDs.

First, consider attributes. Attributes in XML are different from element nodes

in some aspects. First, a node may have at most one attribute of label � for a given

�. Also, the ordering for attributes is irrelevant. For these reasons, we do not

provide persistent identifiers to attributes, i.e., a particular attribute node is identi-

fied by the persistent identifier of its parent and its label (so in our representation

of delta, we use specific update operations for attributes). When two elements are

matched between two consecutive versions, the attributes with the same label are
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automatically matched. We also use ID attributes (XML identifiers) to know if the

nodes owning these attributes should (or can’t) be matched as well.

Now consider DTDs, a most important property of XML documents that al-

lows to type them. We have considered using this information to improve our

algorithm. For instance, it may seem useful to use the information that an ele-

ment of label � has at most one child of label �� to perform matching propagation.

Such reasoning is costly because it involves the DTD and turns out not to help

much because we can sometimes obtain this information at little cost on the doc-

ument itself, even when the DTD does not specify it. On the other hand, the DTD

or XMLSchema (or a data guide in absence of DTD) is an excellent structure to

record statistical information. It is therefore a useful tool to introduce learning

features in the algorithm, e.g. learn that a price node is more likely to change than

a description node. This was not used in our implementation.

3.5.3 Complexity analysis

In this section, we determine an upper bound for the cost of our algorithm, and we

explain the use of indexes in a critical part of the algorithm. For space reasons,

we do not present the algorithmic of the different functions here.

Note that the number of nodes is always smaller than n where n is the size of

both document files.

Matching Nodes. First, reading both documents, computing the hash value

for signatures, and registering ID attributes in a hash table is linear in time and

space. The simple bottom-up and top-down pass -used in the first and fourth

phase- works by considering some specific optimization possibilities on each

node. These passes are designed to avoid costly tests. They focus on a fixed set

of features that have a constant time and space cost for each (child) node, so that

their overall cost is linear in time and space:

1. propagate to parent: Consider that node i is not matched. If it has a children

cmatched to some node c� we will match i to the parent i� of c�. If i has many

matched children c�� c�� ���, then there are many possibilities for i�. So we

will prefer the parent i� of the larger (weight) set of children c��� c��� ���. The

computation is done in postfix order with a tree traversal.
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2. propagate to children: If a node is matched, and both it and its matching

have a unique children with a given label, then these two children will be

matched. Again the cost is no more than of a tree traversal.

During the XyDiff algorithm, the worst-case occurs when no node is matched.

In this case, every node is placed into the priority queue, with an inserting cost

of log�n� (ordered heap). This results in a total upper bound of n � log�n�. The

memory usage is linear in the size of the documents.

For every node, a call is made to the function that finds the best candidate

(the set of candidates is obtained using a hash table created in the first phase).

The general definition of this function would be to enumerate all candidates and

choose the best one as the one with the closest ascendant. It works by enumerating

candidates and testing the ascendant up to a given depth. Thus the time cost is in

O�c � d� where c is the number of candidates, and d the maximum path length

allowed for ancestor’s look-up. As previously described, we make d depend on

the weight W of the subtree. Thanks to the first rules defined in previous section,

and because identical subtrees can not overlap, c is smaller than W��W where W�

is the weight for the subtree representing the whole document. The second rule

states that d � O�log�n� �W�W��. So the cost of a function call is in O�log�n��.

The overall cost is then in O�n � log�n��.

Indexes. However, this upper limit for d means that when the document’s

size increases and W� goes to infinity, d goes to zero. This implies that it would

not be possible to test all candidates. The issue occurs, for instance, when there

are multiple occurrences of some text node in a large document, e.g. a company

name, an email address or the URL of some web site. We wish to be able to test

each candidate at least once. In other words, d should be greater than �. We use

for instance d � � � h � W
W�

. To do so, a specific index (a hash table) is created

during initialization. The basic index retrieves all candidate nodes for a given

signature. This specific index retrieves all candidate nodes for a given signature

and a parent node identifier. This is equivalent to using the basic index for finding

all candidates with that signature, and then test each of them to find the ones with

the proper parent node (i.e. d � �). In other words, the best candidate (if any)

is found in constant time. This generic solution works for any lower bound of

d by using as many indexes to access nodes by their grand-parent or ascendant

identifier. The extra cost is to construct these indexes during initialization. If D is
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the lower bound for d, the cost of constructing the index is in O�D � n�, where n

is the size of the documents.

Delta Construction. The second part consists of constructing the delta using

the matchings obtained previously. Finding nodes that have been deleted or in-

serted only requires to test if nodes of both documents have been matched. It is

also clear that a node has moved if its parent and the parent of its matching do

not match. So this first step is linear in time and space. The difficulty comes with

nodes that stay within the same parent. If their order has changed, it means that

some of them have ’moved’. As mentioned above, to obtain the optimal delta,

we should apply a ’longest common subsequence’ algorithm on this sequence of

children [69]. These algorithms have typically a time cost of O�s��log�s��, where

s is the number of children, and a space cost of O�s��. However, in practical ap-

plications, applying this algorithm on a fixed-length set of children (e.g. 50), and

merging the obtained subsequences, provides excellent results and has a time and

space cost in O�s�. We choose this heuristic, so the total cost for the document is

then in O�n�.

So the overall worst-case cost is O�n � �log�n�� where n is the size of the

document files (including the DTD, if any, that we also have to read). The memory

usage is linear in the total size of both documents.

3.6 Experiments

In this section we present an experimental study of the algorithm. We show that it

achieves its goals, in that it runs in linear time, and computes good quality deltas.

(The linear space bound is obvious and will not be discussed.) We first present

results on some synthesized data (synthetic changes on XML documents). We

then briefly consider changes observed on the web. Due to space limitations only

a small portion of the experiments will be presented here. However, they illustrate

reasonably well what we learned from the experiments. More experiments are

presented in Chapter 5.

3.6.1 Measures on simulated changes

The measures show that the algorithm is very fast, almost linear in the size of

data. Also, since it does not guarantee an optimal result, we analyze the quality of

its result and show experimentally that it is excellent. For these experiments, we
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needed large test sets. More precisely, we needed to be able to directly control the

changes on a document based on parameters of interest such as deletion rate. To

do that, we built a change simulator that we describe next.

Change simulator The change simulator allows to generate changes on some

input XML document. Its design is very important as any artifact or deviation in

the change simulator may eventually have consequences in the test set. We tried to

keep the architecture of the change simulator very simple. The change simulator

reads an XML document, and stores its nodes in arrays. Then, based on some

parameters (probabilities for each change operations) the four types of simulated

operations are created in three phases:

[delete] Given a delete probability, we delete some nodes and its entire sub-

tree.

[update] The remaining text nodes are then updated (with original text data)

based on their update probability.

[insert/move] We choose random nodes in the remaining element nodes and

insert a child to them, depending on the insert and move probability. The type

of the child node (element or text) has to be chosen according to the type of its

siblings, e.g. we do not insert a text node next to another text node, or else both

data will be merged in the parsing of the resulting document. So according to

the type of node inserted, and the move probability we do either insert data that

had been deleted, e.g. that corresponds to a move, or we insert “original” data.

For original data, we try to match to the XML style of the document. If the

required type is text, we can just insert any original text using counters. But if the

required node has to be a tag, we try to copy the tag from one of its siblings, or

cousin, or ascendant; this is important for XML document in order to preserve the

distribution of labels which is, as we have seen, one of the specificities of XML

trees.

Note that because we focused on the structure of data, all probabilities are

given per node. A slightly different model would be obtained if it was given per

byte of data. Note also that because the number of nodes after the first phase is

less than the original number of nodes of the document, we recompute update and

insert probabilities to compensate.

The result of the change simulator is both a delta representing the exact

changes that occurred, which will be useful to compare later with the algorith-

mically computed delta, and a new version of the document. It is not easy to
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determine whether the change simulator is good or not. But based on statistical

knowledge of changes that occurs in the real web (see further), we will be able to

evaluate it and tune it. We tried to verify both by human evaluation of resulting

documents and by the control of measurable parameters (e.g. size, number of

element nodes, size of text nodes, ...) that the change simulator behaves properly.

The change simulator we presented here is the result of a few iterations. It seems

now to conform reasonably to our expectations.

Performance We verify next that the complexity is no more than the expected

O�n � log�n�� time. To do that, we use the change simulator to create arbitrary

sized data and measure the time needed to compute the diff algorithm. In the ex-

periment we report next, the change simulator was set to generate a fair amount of

changes in the document, the probabilities for each node to be modified, deleted or

have a child subtree inserted, or be moved were set to 10 percent each. Measures

have been conducted many times, and using different original XML documents.
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Figure 3.7: Time cost for the different phases

The results (see Figure 3.7) show clearly that the algorithm’s cost is almost

linear in time1. We have analyzed precisely the time spent in every function, but

due to lack of space, we do not provide full details here. Phases � � 	, the core of

1A few values are dispersed because of the limitations of our profiling tool.
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Size (in bytes) of the synthetic delta

Size of the delta (in bytes) computed by the diff algorithm
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Figure 3.8: Quality of Diff

the diff algorithm, are clearly the fastest part of the whole process. Indeed, most

of the time is spent in parts that manipulate the XML data structure: (i) in Phase 1

and 2, we parse the file [113] and hash its content; (ii) in Phase 5, we manipulate

the DOM tree [113]. The progression is also linear. The graph may seem a bit

different but that comes from the fact that the text nodes we insert turn out to be

on average smaller than text nodes in the original document.

A fair and extensive comparison with other diff programs would require a lot

more work and more space to be presented. An in-depth comparison, would have

to take into account speed, but also, quality of the result (“optimality”), nature

of the result (e.g., moves or not). Also, the comparison of execution time may

be biased by many factors such as the implementation language, the XML parser

that is used, etc. Different algorithms may perform differently depending on the

amount and nature of changes that occurred in the document. For example, our

diff is typically excellent for few changes.

Quality We analyze next the quality of the diff in various situations, e.g. if

the document has almost not changed, or if the document changed a lot. We paid

particular attention to move operations, because detecting move operations is a

main contribution of our algorithm.
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Using our change simulator, we generated different amounts of changes for

a sequence of documents, including a high proportion of move operations. In

Figure 3.8, we compare the size of the delta obtained using XyDiff to the size

of the original delta created by the change simulator. The delta obtained by the

simulator captures the edit script of operations that has been applied to the original

document to change it, and, in that sense, it can be viewed as perfect. Delta’s sizes

are expressed in bytes. The original document size varies from a few hundred

bytes, to a megabyte. The average size of an XML document on the Web is about

twenty kilobytes. The points in Figure 3.8 are obtained by varying the parameters

of the change. Experiments with different documents presented the same patterns.

The experiment shows that the delta produced by diff is about the size of

the delta produced by the simulator. This is the case even when there are many

updates including many move operations. For an average number of changes,

when about thirty percent of nodes are modified, the delta computed by the diff

algorithm is about fifty percent larger. This is precisely due to the large number of

move operations that modify the structure of the document. But when the change

rate increases further, the delta gains in efficiency again, and is even sometimes

more accurate than the original delta, in that it finds ways to compress the set of

changes generated by the simulator. Note that the efficiency lost in the middle of

the range is very acceptable, because (i) the corresponding change rate is much

more than what is generally found on real web documents; and (ii) the presence

of many moves operations modifying the structure of the document is rare on real

web documents.

3.6.2 Measures on real web data

We mention next results obtained by running our algorithm over more than ten

thousands XML documents crawled on the Web [79]. Unfortunately, few XML

documents we found changed during the time-frame of the experiment. We be-

lieve that it comes from the fact that XML is still in its infancy and XML docu-

ments on the web are less likely to change than HTML documents. This is also

due to the fact that the time-frame of the experiment was certainly too short. More

experiments are presented in Chapter 5.

We present here results obtained on about two hundred XML documents that

changed on a per-week basis. This sample is certainly too small for statistics,

but its small size allowed a human analysis of the diff outputs. Since we do not
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have here a “perfect” delta as in the case of synthesized changes, we compare our

results to Unix Diff. Our test sample also contains about two hundred large XML

documents representing metadata about web sites. We also applied the diff on a

few large XML files (about five megabytes each) representing metadata about the

entire INRIA web site.
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Figure 3.9: Delta over Unix Diff size ratio

The most remarkable property of the deltas is that they are on average roughly

the size of the Unix Diff result (see Figure 3.9). The outputs of Unix Diff and

of our algorithm are both sufficient to reconstruct one version from another, but

deltas contain a lot of additional information about the structure of changes. It

is interesting to note that the cost paid for that extra information is very small in

average.

It is also important to compare the delta size to the document’s size, although

this is very dependent on how much the document changed. Other experiments

we conducted [69] showed that the delta size is usually less than the size of one

version. In some cases, in particular for larger documents (e.g. more than 100

kilobytes), the delta size is less than 10 percent of the size of the document.

One reason for the delta to be significantly better in size compared to the Unix

Diff is that it detects moves of big subtrees. In practice, this does not occur often.
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A drawback of the Unix Diff is that it uses newline as separator, and some XML

document may contain very long lines.

We have also tested XyDiff on XML documents describing portions of the

web, e.g., web sites. We implemented a tool that represents a snapshot of a portion

of the web as an XML document. For instance, using the site www.inria.fr

that is about fourteen thousands pages, the XML document is about five mega-

bytes. Given snapshots of the web site (i.e. given two XML documents), XyDiff

computes what has changed in the time interval. XyDiff computes the delta in

about thirty seconds. Note that the core of our algorithm is running for less than

two seconds whereas the rest of the time is used to read and write the XML data.

The delta’s we obtain for this particular site are typically of size one megabytes.

To conclude this section, we want to stress the fact that although the test set was

very small, it was sufficient to validate the formal analysis. More experiments are

clearly needed.

3.7 Conclusion

All the ideas described here have been implemented and tested. A recent version

of XyDiff can be downloaded at [34]. We showed by comparing our algorithm

with existing tree pattern matching algorithms or standard diff algorithms, that

the use of XML specificities leads to significant improvements.

We already mentioned the need to gather more statistics about the size of deltas

and in particular for real web data. To understand changes, we need to also gather

statistics on change frequency, patterns of changes in a document, in a web site,

etc. Many issues may be further investigated. For example we can extend our

use of DTDs to XMLSchema. Other aspects of the actual implementation could

be improved for a different trade-off in quality over performance, e.g. we could

investigate the benefits of intentionally missing move operations for children that

stay with the same parent.

51





Chapter 4

An XML representation of changes

in XML documents: XyDelta

Abstract There are several possible ways to represent the change information in

order to build a temporal XML data warehouse. One of them is to store, for each

document, some deltas that represent changes between versions of the documents.

It is then possible to issue queries on the deltas, in particular if they are themselves

XML documents. In this chapter, we present our work on the topic of representing

XML changes in XML, and more precisely we detail some formal aspects of our

representation, namely XyDelta.

This work was performed with Amélie Marian, Serge Abiteboul and Laurent

Mignet. An article has been published in [69]. The project was originally started

by Amélie Marian before she left for Columbia University. I was then leading the

work. Marian worked on the definition of persistent identifiers (XIDs), and the

XML delta format. She also developed the first prototype of algorithms to apply,

revert and aggregate deltas. Finally, she conducted experiments to evaluate the

effectiveness of deltas for storing versions.

My contributions to that work are:

� The formal definition of set-based deltas as opposed to edit-scripts (see be-

low), and the notion of “equivalent” deltas.

� Linear time algorithms (and their implementation) to apply deltas, invert

them, and aggregate them. The core of this work consists in the definition

of an order relationship between nodes that is used to order operations.

� The formal (re)definition of move operations.
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This section presents my contributions. They have been clearly influenced by

the original work of Marian. Note that the XyDiff output discussed in previous

chapter is in XyDelta.

4.1 Introduction

In previous chapter, we explained how to detect changes between two versions of

an XML document. One possible use of change information is to use matching

between nodes and provide a persistent identification mecanism. This is done, for

instance, by storing a “large” version of the document that contains an aggregation

of all past data fragments, with annotations that indicates during which period of

time each data fragment was present in the document. This approach is efficient

for databases where reliable identification information is available for each piece

of data, e.g. scientific data with keys [19, 18].

Another possible use of change information is to store, for each document,

some deltas, that represent changes between versions of the documents. This

approach is often prefered to the previous one when the only information available

are snapshot versions of the documents. A famous example is CVS [39] that

uses deltas to store versions of program source files. In this chapter, we consider

this approach that we chose in the context of the Xyleme project [117] where

documents were retrieved from the Web. More precisely, we consider the use

of XML deltas to represent changes in XML documents. To analyze changes, it

is then possible to issue queries on the deltas, since they are themselves XML

documents.

Currently, there is no accepted standard on this topic, although several propos-

als have been made since we introduced our deltas, in particular XUpdate [114],

DeltaXML [44] and Microsoft XDL [76]. In the next chapter, these proposals are

compared to our representation.

Deltas. Consider snapshot versions of an XML document at some time t. The

changes between the snapshot at time t, and the snapshot at time t � �, form a

delta deltat�t��.

A delta deltai�j represents all changes that occurred between the snapshot of

the database (or document) at time i, and the snapshot at time j. Such a delta

consists in general in change operations (e.g. insert, delete, update), that describe
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a way of transforming version i of the document into a version j. If i � j, the

delta is called a forward delta. If i � j, the delta is called a backward delta.

Most previous works uses deltas that are ordered sequences of operations.

More precisely, each delta deltai�j consists in a sequence of fine grain operations

Op�� Op�� Op�� ���� Opn. These operations are applied to the document version

i in the sequence order. The consistency of the delta is its ability to transform a

document version i into some document version j. It is possible that one operation

inserts a node in an XML document, and another one inserts some other node

below it. The second operation is meaningless in absence of the first one.

Motivations. One of our goals was to consider, if possible, the atomic opera-

tions as independent one from an other. There are many advantages to such an

independance:

� Improve efficiency. It is often the case that a large number of changes oc-

curred between two versions of a document. It is inefficient to apply them to

a document if one has to consider changes only in a specific ordering given

by the sequence. The ability to analyze groups of them separately is also

useful to monitor specific changes.

� Concurrency control. Management of independent changes gives more flex-

ibility for concurrency control, e.g. to manage updates by different users on

the same document.

� Semantics of changes. Each independent operation should have a precise

semantic. On the opposite, a drawback of editing scripts is that a valid edit

script may contain operations that have little semantics. For instance, it may

insert a node in the document, and later delete that node, or change several

time the same text node.

� Comparing changes. The same changes may be represented by several pos-

sible edit scripts. Our model makes comparison of deltas more efficient.

Storage Strategies. Note that when deltas are used, several storage policies can

be chosen [69, 29]. For instance, storing the latest version of the database, and

all deltat�t�� backward deltas in order to be able to reconstruct any version of the

database. Another possibility is to store the first version of the database, say at

t � 
, and all forward deltas delta��t. It is also possible to store only snapshot
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versions of the database, and construct the deltas on the fly when necessary. This

issue is ignored here.

Organization. In Section 4.2, we first propose a formal definition for edit scripts

on XML documents, and we describe some properties of edit scripts. Then we

introduce XyScripts, which are specific edit scripts, and XyDelta, representing

a class of equivalent edit scripts. Finally, we show that each edit script can be

transformed into “its” XyDelta. In Section 4.3, we show how our model can be

extended to support some specific XML concepts, and other editing operations

such as update and move. The last section is a conclusion.

4.2 From Edit-Scripts to XyDelta

In this section, we formally define XyDelta based on edit scripts for XML doc-

uments. We only consider two possible operations: insert and delete. Others

operations (update, move) are discussed in the next section.

In this section, we consider two version i and j of an XML document. We sup-

pose that, in the first version of the document (i.e. i), each node can be uniquely

identified by an identifier named its XID. This means that each node of the first

document is tagged with an XID, as proposed by Marian and al. in [69].

Note that the implementation is in fact different than adding a tag to each node.

We ignore here some subtlety of the management of XID as proposed by Marian

and al. We only assume that an XID-Map is attached (virtually) to the document.

An XID-Map is a string representation of sequence of XID. When an XID-Map

is (virtually) attached to some XML sutree, it provides a persistent identifier to all

the nodes in the subtree.

4.2.1 A definition for an Edit-Script

For clarity reasons, we first consider only one type of node, e.g. element nodes.

In particular, we ignore attributes and text nodes. Extending the model to support

attributes and text nodes is straightforward and is briefly considered further.

We also ignore the problem of managing white-spaces in XML documents.

White-spaces are used in XML documents mainly for textual readability, but their

management may become a technical issue since XML tools and models (e.g.

DOM, SAX, XPath) give them different semantics.
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We first define delete and insert operations, then we define edit scripts and

some of their properties.

Definition 4.2.1 (delete)

A delete operation consists in deleting some node n and the entire subtree rooted

at that node from a document. The delete operation descriptor contains:

� The deleted subtree (starting at some node n), and its XID-Map (including

the XID of n).

� The XID of the parent node p of n.

� The position of n in the ordered sequence of children of p.

Consider a description of some delete operation on some document D. In or-

der for the delete operation to be valid with D, the node n must exists, its parent p

also, the position has to be correct and the subtree content listed with the operation

has to be identical (including XIDs) to the subtree contained in the document.

An example of delete is as follows:

<delete

parentXID="18"

position="2"

DataXIDmap="(12-13)" >

<Tag>

This data is deleted,

including the tag "Tag"

<subtag>subtext</subtag>

</Tag>

</delete>

Definition 4.2.2 (insert)

An insert operation consists in inserting an XML subtree in some document. The

insert operation descriptor contains:

� The inserted subtree (starting at root n), and its XID-Map (including the

XID of n).
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� The XID of the parent node p where the subtree should be inserted.

� The position of n in the ordered sequence of children of p.

Thus, an insert operation is exactly symmetrical to an delete operation. Again,

consider some document D and an insert operation. For the operation to be valid

with D, the parent p must exists, the position must be valid (i.e. between 1 and the

number of children of p plus 1), and the XID-Map of the inserted subtree should

contain no XID value that is used in some other place of the document. A typical

example is:

<insert

parentXID="18"

position="2"

DataXIDmap="(12-13)" >

<Tag>

This data is deleted,

including the tag "Tag"

<subtag>subtext</subtag>

</Tag>

</insert>

It is important to note that the definition of insert and delete are symmetrical.

More precisely, consider some document D on which a delete operation may be

applied that results in document D �. Then, the insert operation obtained by re-

naming delete into insert and using the exact same attributes transforms D � into

D.

Definition 4.2.3 (Edit-Script)

An edit script is an ordered sequence of delete and insert operations. Let an edit

script S be defined by Op�� Op�� ���� Opn. Let D� be exactly the document D. S is

valid with D if:

� Opi is consistent with Di��

� Di is the document resulting when applying Opi to Di��
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From here, when we consider some edit script, we always mean a valid edit

script. We also note S�D� the result document, i.e. Dn.

Definition 4.2.4 (Equivalence)

Two edit scripts S and S � are equivalent iff: (i) for each D, S is valid for S iff S �

is valid for D, (ii) for each D valid with S and S �, S�D� � S ��D�

Note that the notion of equality between documents is here the XML content

identity as defined in the XML standard [102]. For simplicity, we also use a weak

notion of equivalence: S and S � are equivalent for D, if both are valid with D,

and S�D� � S�D��. For instance, the following edit script is equivalent (for any

document containing a node with XID 7; and no 99 node), to the empty script:

<insert DataXIDmap="99" parentXID="7" position="1">

<testTag/>

</insert>

<delete DataXIDmap="99" parentXID="7" position="1">

<testTag/>

</insert>

Definition 4.2.5 (Aggregation/Composition)

We define the aggregation of two edit scripts S and S � as the edit script corres-

ponding to the concatenation of their two sequences of operations. It is noted

S ��S�.

If S is valid with some document D, and S � is valid with S�D�, then S ��S� is

valid with D.

Aggregation of edit scripts shows the drawback of this classical notion of edit

scripts. Consider for instance the previous example. S consists in the first insert

operation, and S � in the delete operation that follows and deletes the inserted node.

For any document D such that S ��S� is valid with D, we can say that S ��S� is

equivalent to the empty script. However, strictly speaking, S ��S� is not equivalent

to the empty script since there are some documents on which S ��S� could not

be applied. With the model that we introduce next, we focus on equivalent edit

scripts by considering only the effect on their source and target document D and

S�D�.
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4.2.2 Changing the order of operations in edit scripts

We present here a set of simple swap operations that transform some edit script

in an equivalent edit script by swapping two consecutive operations. By making

possible the swap of consecutive operations, we enable the complete reordering

of any edit script. This is the basis of the XyDelta model. More precisely, we

will be swapping to rewrite edit scripts into some ”normal form” with some nice

properties. We present a series of lemma that allow to handle the various cases

that may arise. The proofs are straightforward, so omitted.

Lemma 4.2.6

Let S be an edit script containing two consecutive delete operations X� and X�

with the same parent node. Let p� and p� be the respective node’s positions. If

p� � p�, then S � obtained by swapping the two operations, and replacing p� by

p� � �, is equivalent to S.

The goal is that position of delete operations should refer to the position of the

nodes before the operations are executed. An example is as follows. Consider a

node �, with four child nodes �
�� �
�� �
� and �
	. The edit script:

...

<delete parentXID="1" DataXIDmap="102" position="2">

<child2 />

</delete>

<delete parentXID="1" DataXIDmap="104" position="3">

<child4 />

</delete>

...

may be transformed into the equivalent:

...

<delete parentXID="1" DataXIDmap="104" position="4"> // !!!

<child4 />

</delete>

<delete parentXID="1" DataXIDmap="102" position="2">

<child2 />

</delete>

...
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In a similar way, we define other swap possibilities:

Lemma 4.2.7

X� and X� are insert operations with the same parent. If p� � p�, then the two

operations may be swapped, with p� replaced by p� � �

The goal is that the position of insert operations should refer to the position of

the nodes after the two operations are executed. Consider previous example. We

now want to insert the deleted nodes. A possible edit script is:

...

<insert parentXID="1" DataXIDmap="104" position="3">

<child4 />

</delete>

<insert parentXID="1" DataXIDmap="102" position="2">

<child2 />

</delete>

...

It may be transformed into the equivalent:

...

<insert parentXID="1" DataXIDmap="102" position="2">

<child2 />

</delete>

<insert parentXID="1" DataXIDmap="104" position="4"> // !!!

<child4 />

</delete>

...

Lemma 4.2.8

Let S be an edit script, with two consecutive operations: an insert X� followed

by a delete X�, with the same parent, and the respective positions p� and p�. If

p� � p�, then, for each document D such that S is valid with D, S is equivalent

to S � obtained by removing the two operations. If p� � p�, then S � is obtained by

swapping X� and X�, and replacing p� by p�� �. If p� � p�, then S � is obtained

by swapping X� and X�, and replacing p� by p�� �.

Lemma 4.2.9

Let S be an edit script, with two consecutive operations: an insert (resp. delete)

X�, followed by a delete X�. Suppose that the following condition applies: (i)
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X� and X� do not have the same parent, (ii) X� does not delete part of (or an

ancestor of) the subtree is inserted by X� (resp. X� do not delete an ancestor of

the subtree that is deleted by X�). Such two operations are then said independent

operations. Then S is equivalent to S � obtained by swapping X� and X�.

Lemma 4.2.10

Let S be an edit script, with two consecutive operations: an insert (resp. delete)

X�, followed by a delete X� (as in previous lemma). If X� deletes part of a

subtree inserted by X�, then S � obtained by removing X�, and modifying X�

according to X�, is equivalent to S. The modification of X� consists in removing

from the inserted data in X� the subtree deleted by X�. Note that the XID of

corresponding nodes should also be removed from X�.

Lemma 4.2.11

Let S be an edit script, with two consecutive operations: an insert (resp. delete)

X�, followed by a delete X� (as in previous lemma). If X� deletes an ancestor

of a subtree deleted by X�, then S � obtained by removing X�, and modifying X�

accordingly, is equivalent to S. The modification of X� consists in adding in X�

the piece of data removed by X�. The XID of corresponding nodes should also

be added to X�.

Conversely, if X� is an insert operations, a swap if possible by using similar

updates.

A summary is shown in Figure 4.1. Some operations are marked not used,

meaning that we do not use them in the next section. Intuitively, they correspond

to a “correct” order between the two operations, so that we do not swap the two

operations.

4.2.3 A Definition for XyDelta

In this section, we first introduce the notion of a XyScript. It is a specific edit script

that represents a XyDelta, namely a set of operations. Then we extend the notion

of XyDelta, by showing that each edit script is equivalent to some XyScript.

Definition 4.2.12 (XyScript and XyDelta)

A XyScript is an edit script in which atomic operations are sorted according to

the COMPARE function in Figure 4.2. More precisely, operation O� occurs before
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Figure 4.1: Summary of swap operations to reorder Edit Scripts
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operation O� if and only if

COMPARE�O�� O�� � true

. For each XyScript, that is a sequence of operations, we name XyDelta the set of

these operations.

Intuitively, a XyScript is an edit script in which atomic operations are ordered

as follows:

1. the delete operations come first,

2. delete operations with the same parent node are ordered in the reverse order

of the deleted nodes positions

3. insert operations with the same parent node are ordered in the same order

as the inserted nodes positions

The goal of these constraints is that: (i) node’s position in delete is the same as

the position of the node in the initial version of the document, (ii) node’s position

in insert is the same as the position of the node in the final version of the document.

One can show that this is true, i.e. the following theorem is true:

Theorem 4.2.13

The order of operations in a XyScript is such that the position of nodes for each

operation corresponds exactly to the initial (for delete) or final (for insert) position

of the node in the document.

The proof is not detailed here. The proof is simple since the order (i.e. the

COMPARE function in Figure 4.2) was defined to match the exact requirements

that conduct to initial and final positions of nodes in each operation. This corres-

ponds to the comparisons depicted in the First Part of Figure 4.2. This defines

a partial order on the set of operations. The second part is used to define a total

order on the set of operations.

For instance, consider the deletion of two nodes in a document. A possible

edit script is as follows:

<delete DataXIDmap="101" parentXID="1" position="1">

<deleteMe1 />

</delete>
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<delete DataXIDmap="102" parentXID="1" position="1">

<deleteMe2 />

</delete>

After the first node is deleted, the position corresponding to operations on

sibling nodes (with higher positions) are decreased by �. Thus, in the second

delete operation, the second node position is now �. This edit script is not a

XyScript. A XyScript would be:

<delete DataXIDmap="102" parentXID="1" position="2">

<deleteMe2 />

</delete>

<delete DataXIDmap="101" parentXID="1" position="1">

<deleteMe1 />

</delete>

By reversing the order of delete operations, the position used in each operation

correspond to the initial position of the nodes.

Based on the transformations described in previous section, we propose the

theorem below:

Theorem 4.2.14 (XyScript existence)

Any script S valid with some document D can be transformed in a XyScript S �

equivalent to S with D. Thus, for any script S valid with some document D, there

is an equivalent (with D) XyDelta.

This result is obtained by applying the bubble-sort algorithm on S. The order

relationship used is compliant with the order mentioned previously and is detailed

in Figure 4.2. An important aspect is the Second Part of Figure 4.2 that was added

to obtain a total order on the set of operations. This was necessary to apply the

bubble-sort algorithm.

Note that each time a FALSE value is returned, the two operations must be

swapped, and are modified accordingly. For the algorithm to be correct, it is

necessary to verify that the modifications applied to the operation ensure that the

compare function returns TRUE after they have been modified and swapped. This

is indeed the case.

The XyScript is an ordered representation of operations. The unordered rep-

resentation of these operations, namely the set of operations, is the corresponding

XyDelta.
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At this point, it is also important to note that bubble-sort algorithms have a

quadratic time complexity. One can use other techniques that are tailored to spe-

cific parts of the applications. For instance, in XyDiff, the sorting is achieved

by using the order of nodes in the original and final documents, since they are

available when the delta is constructed.

The first part of Figure 4.2 uses information that is contained in the operation

descriptors. However, the second part (the extension) uses information (ancestor

of nodes) that is not contained in the operation descriptors. It must be obtained

from the original document. Thus, to convert an edit script into a XyDelta, the

original document is required. In order to manipulate XyDeltas (e.g. aggregation -

see below), we chose to also store this information in the header of the delta. More

precisely, we store, for each node that is deleted (resp. inserted) the nodes on the

path up to the root in the original (resp. final) document, and their position in the

original (resp. final) document. To save space, this information is stored using two

tree structures in the XyDelta, one for the ancestor’s paths of delete operations,

and one for the ancestor’s paths of insert operations. Each tree summarizes a part

of the tree structure of the original (resp. final) document, that is necessary to

retrieve the ancestor path descriptors and the position of ancestor nodes.

Remark 4.2.1

[delete+insert] In some cases, there might be an insert operation that inserts some

data that has been deleted previously in the edit script. If (part of) the data deleted

and then inserted is strictly identical, one may want to remove the corresponding

operations. However, it is first necessary to verify that the persistent identifiers

(XIDs) are the same on the inserted data than on the deleted data. If not, these two

operations are not equivalent to an empty operation.

Remark 4.2.2

[No original document] An important aspect of the algorithm based on Figure 4.2

is that it does not require to use the original document. The proof is obtained

by considering all possible tests that are conducted. For most unitary tests that

consider the type and position fields of operations, this is obvious. For some other

tests, that consider ascendant or descendant expressions, there is a precise reason.

The reason is that insert and delete operations contain the XID-Map of the subtree

below the node on which the operation applied. This information is sufficient to

process the tests shown in Figure 4.2. We explain below that for this reason, the
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boolean COMPARE(Operation X1, Operation X2) {

// === First Part ===

// delete operations are before insert operations
if (X1.Type=="delete")&&(X2.Type=="insert") {

return TRUE;
}
if (X1.Type=="insert")&&(X2.Type=="delete") {

return FALSE;
}

// in the case of two delete operations
// -descendant subtrees should be deleted first
// -sibling nodes are deleted first on the right
if (X1.Type=="delete")&&(X2.Type=="delete") {

if (X1.node DESCENDANT OF X2.node) return TRUE;
if (X2.node DESCENDANT OF X1.node) return FALSE;

}

// in the case of two insert operations
// -ancestor nodes should be inserted first
// -sibling nodes are inserted first on the left
if (X1.Type=="insert")&&(X2.Type=="insert") {

if (X2.parent DESCENDANT OF X1.node)
OR (X2.parent EQUALS X1.node) return TRUE;

if (X1.parent DESCENDANT OF X2.node)
OR (X1.parent EQUALS X2.node) return FALSE;

}

// === Second Part ===
// This part is necessary for a total order

Let P be the first common ancestor of X1 and X2
Let P be the first common ancestor of X1.node and X2.node
// ’first’ mean closest to X1.node and X2.node
// for instance, P may be the common par-

ent of X1.node and X2.node

Let PX1 be the ancestor of X1.node (or X1.node) that is a child of P
Let PX2 be the ancestor of X2.node (or X2.node) that is a child of P

if (X1.type="delete")&&(X2.type="delete") {
return (PX1.Position>PX2.Position);

}
else if (X1.type="insert")&&(X2.type="insert") {

return (PX1.Position<PX2.Position);
}

}

Figure 4.2: Compare function to find the XyDelta order of Edit Scripts
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move operation must contain the XID-Map of the moved subtree, although it does

not seem necessary at first glance.

Corollary 4.2.15

Let S� and S� be two XyScripts, such that S� is valid on D, S��D� � D� and

S� is valid on D�. There is a XyScript S that is valid on D and equivalent to the

aggregation of S� and S�.

It is possible to create a XyDelta aggregation algorithm that does not require

to use the original document. It can be done as follows:

1. Output as a sequence of operations the Edit Scripts corresponding to Xy-

Delta S� and S�

2. Merge the two sequences of operations as an Edit Script E

3. Find the XyScript for E

Summary We proved that any edit script is equivalent to a XyScript, and thus

may be represented by a XyDelta. A XyDelta is a set representation of changes

between two documents. Given a XyDelta, one can construct the corresponding

XyScript. XyScripts are edit scripts that have specific properties respectively to

the attribute of their operations.

4.3 Extending the Model

In this section, we propose several extensions to the XyDelta model. Some of

them are used to improve the support of XML data (e.g. text nodes, attributes),

others enrich the update mode (e.g. the move operation).

4.3.1 Text nodes and Attribute nodes

To add the support of text nodes, we simply consider text nodes as nodes with no

children. The support of attributes is done in the spirit of XML:

1. attribute nodes are attached to some element node

2. attribute nodes have no XID: they are identified by the pair consisting of:

(i) the XID of their element node and (ii) their attribute name

68



CHAPTER 4. CHANGES IN XML: XYDELTA

The attribute operations consist in adding an attribute (name and value) to some

element, removing an attribute name and value, or modifying the value of some

attribute. They are described as follows:

<attr-insert

nodeXID = "..."

attrName = "..."

attrValue = "..." />

<attr-delete

nodeXID = "..."

attrName = "..."

attrValue = "..." />

<attr-modify

nodeXID = "..."

attrName = "..."

OldValue = "..."

NewValue = "..." />

As in previous section, note that the insert and delete operations are exactly

symmetrical. In particular, the value of the attribute is stored along with the delete

operations, although this was not strictly necessary, in the context of edit scripts

that go only forward.

Note also that the order of attribute operations is not very important. However,

in the context of edit scripts, it is important that attribute operations only occur

when their element node exists, i.e. before it has been deleted or after it has been

inserted (if any of these two operations occurs).

Others . We do not detail here how to handle specific XML concepts such as

entities, comments, CDATA vs. PCDATA. As previously mentioned, the proper

handling of white-spaces within text representations of XML may become a dif-

ficult task due to variations between approaches such as DOM, SAX, XQuery,

XPath, ...
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4.3.2 Adding Update and Move operations

In this section, we present update and move extensions to the model. But first,

we introduce the notion of matching between the nodes of the original and final

documents.

Consider a node that is present in the two versions of the document, with the

same XID. It has not been deleted, it has not been inserted. We say that the two

versions of that node define a matching. A node is matched if we can find his

corresponding node in the other version of the document.

Update Update operations represent the changing value of a text node that is

attached to some element node. We consider update operations if and only if:

(i) an element node a is matched between the two versions of the document and

(ii) it has a single child node that is a text node. In this case, if the text node

value changes, there is exactly one insert and one delete operation with the par-

ent XID corresponding to a. We annotate these two operations with an attribute

update="yes" indicating that the pair corresponds in fact to a single update

operation. Based on this, it is possible to improve furthermore the syntax of up-

date by writing, in the XML document representing the delta, a single update

operation for each pair. Only when the delta is processed, the update operation

may be split into the corresponding insert and delete pair (if necessary to execute

it). The syntax is as follows:

<update

parentXID="..."

OldDataXIDmap="(...)"

NewDataXIDmap="(...)" >

<OldText> This is the old text node value </OldText>

<NewText> This is the new text node value </NewText>

</update>

Note that the position is not listed since it is always � by definition. Indeed,

remind that we only consider the update of text as a single child node. We do not

consider, for instance, the update of some text in:

<root>
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<x/>

text

<y/>

</root>

In some applications, the system may keep the same XID for the changing text

node. In other words, the semantics is that the text node is the same although its

value changes. In that case, the OldDataXIDmap and NewDataXIDmap attrib-

utes have the same value. They may be grouped within a single DataXIDmap

attribute. In other applications, the XIDs are used to quickly reconstruct versions

of the documents, or to index the textual content of document. Thus, the system

may prefer to assign a new XID to text nodes each time their value changes.

In some XML documents, the text nodes may contain very long strings. In

that case, a possible extension is to use string diffs (or text-based diffs) on them.

This results in shorter deltas, and describes changes with slightly more accuracy

from a semantic point of view.

Move As we have seen in previous chapter, move operations are important both

for the efficiency and the semantics of the deltas. Our model has a move opera-

tion. This distinguishes from other work without move. It turns out that for some

purposes, it is useful to cut it in delete/insert but semantically it is a move. The

semantic of a move is different than a pair of delete and insert in that it keeps the

persistent identifiers of nodes.

We handle move operations in a way that is similar to updates. More precisely,

a pair of insert and delete operations that removes and then inserts the same data,

with the same XIDs, is annotated as a move operations using a move="yes"

attribute. Again, the storage of move operations may be achieved using a single

XML subtree as follows:

<move

sourceParentXID="..."

sourcePosition ="..."

targetParentXID="..."

targetPosition ="..."

DataXIDmap ="(...)" >

</move>
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Two important things may be noted:

� The DataXIDmap attribute may seem unnecessary. Indeed, storing the

XID of the subtree root node is in some cases sufficient. However, this

DataXIDmap is necessary, as seen previously, to compare and order the

operations of the corresponding edit script, for instance to aggregate with

some other XyDelta.

� It is in general not necessary to store the data that is moved. Indeed, the

data is present both in the source and target version of the document. Thus,

given one of the two versions, it is always possible to reconstruct the other

version.

It is important here to mention that it is the role of the creator of the delta to

decide whether a pair of delete and insert is a move or not. More precisely, con-

sider some fragment of XML tree that is present in both documents. Depending

on various criteria, the change detection tool may decide: (i) that this data is per-

sistent from one version to another and has been moved (if parents are different),

then the data keeps the same XIDs (ii) that the two data sets are different data

fragments, although having an identical value. In other words:

(i) the identity between data fragments is defined based on the XIDs, and not

on text value and element names,

(ii) the semantic of move is to consider the moving some data around the docu-

ment, keeping the same XIDs

(iii) it is the change detection algorithm who decides whether data fragments

with identical values (text nodes, tag names) have the same XIDs

Cutting Move A move operations consists both in deleting a part of the docu-

ment and inserting it in another place. Since our model uses precises rules with

respect to the nodes positions and order of operations, it turns out that the proper

processing of move is achieved but cutting it into a “special” pair of delete/insert.

For instance, when aggregating deltas, the to position of moves from the first

delta, and the from position of moves from the second delta have to be updates,

which is easily achieved by considering the corresponding insert and delete oper-

ations. Semantically, the “special” pair of delete/insert is a move, in particular it

keeps the persistent identifiers of nodes.
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4.4 Properties of XyDelta

In this section, we present various properties of XyDeltas, and mention briefly the

corresponding algorithms and their cost.

XyDelta: Summary Intuitively, a XyDelta is an XML file that represent a set of

operations transforming one XML document into another. A XyScript is an edit

script. A XyDelta represents a set of operations which, when ordered correctly,

provides a XyScript. The operations descriptors, and in particular the nodes iden-

tifiers and positions, refer to the first version of the document (for delete) or to the

second version (for insert). Update and move operations are supported.

Creating a XyDelta There are several ways to create a XyDelta.

� One is to construct a set of operations given the two versions of the doc-

ument. This is done typically by XML diff programs. The algorithms and

cost may vary. A comparative study is conducted is Chapter 5.

� A second possibility is to start from a document and generate the set of

operations. The operations may be generated randomly, for instance in a

changes simulator that we implemented, or they may be generated based on

users actions, for instance in an XML editor.

� A third possibility is, given an edit script, to transform it in the correspond-

ing XyDelta. We proved that this is always possible using a bubble-sort

algorithm, which cost is quadratic. The comparison of two operations has a

O�l� cost, where l is the maximum length of their XID-Map. Thus, the sort-

ing cost would be O�n�� l�. However, one can use faster sorting algorithms,

such as quick-sort in O�n � log�n��. The modifications of nodes positions

are then computed on position tables that are stored for each node. The cost

is in O�l �n� �log�n�� log�f��� where f is the maximum number of nodes

with the same parent.

Inverse of a XyDelta Thanks to the exact symmetry between insert and delete

operations, the inverse of a XyDelta always exists. It is obtained by simply renam-

ing each insert into delete, and each delete into insert. For move (resp. update), it

suffices to think of move (resp. update) as a pair of delete and insert to obtain the
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inverse. The space cost is a constant, and the time cost is linear in the number of

operations.

Applying a XyDelta to a document To apply a XyDelta to a document, we first

generate the corresponding edit script by ordering the set of operations according

to the rules presented previously. Note that positions are not modified since, by

definition of XyDelta, they already correspond to the correct positions according

to this order. In particular, delete operations are executed first, and then insert

operations. Obviously, we keep the subtrees which are deleted as part of a move

operation until they are inserted again. We can then use it when executing the

insert part of the move. The cost of ordering a XyDelta is in O�l � n � log�n��,

where n is the number of operations, and l the maximum length of an XID-Map

in the delta.

Aggregating XyDeltas To aggregate XyDelta, we first generate the two corres-

ponding edit scripts, and then we find the XyDelta corresponding to their concat-

enation. The cost is the sum of the cost of ordering the operations in the two deltas,

plus the cost of finding the XyDelta. Thus, the total cost isO�l��n��n���log�f��,

where n� and n� are the number of operations in each delta, l the maximum length

of an XID-Map in these deltas, and f the maximum number of nodes with the

same parent.

4.5 Conclusion

We have presented a formalism for representing XML changes in XML. The Xy-

Delta that we obtain have nice mathematical properties.

This framework has been implemented as part of the XyDiff [34] project.

We believe that further work is necessary on the topic of manipulating sev-

eral deltas to manage the history of a document, retrieve versions and query

changes. Marian worked on the topic of storage strategies based on deltas. Other

approaches would be interesting, such as storing an extended version of the

document with time information [23], and generating deltas on the fly when

necessary.
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Chapter 5

A comparative study of XML diff

tools

Abstract. Change detection is an important part of version management for

databases and document archives. The success of XML has recently renewed

interest in change detection on trees and semi-structured data, and various al-

gorithms have been proposed. We study here different algorithms and represent-

ations of changes based on their formal definition and on experiments conducted

over XML data from the Web. Our goal is to provide an evaluation of the quality

of the results, the performance of the tools and, based on this, provide guidelines

to users for choosing the appropriate solution for their applications.

I started this work and lead it in a cooperation with Talel Abdessalem and

Yassine Hinnach.

5.1 Introduction

The context for the present work is change control in XML data warehouses. In

such a warehouse, documents are collected periodically, for instance by crawling

the Web. When a new version of an existing document arrives, we want to un-

derstand changes that occurred since the previous version. Considering that we

have only the old and the new version for a document, and no other information

on what happened between, a diff needs to be computed. A typical setting for

the diff algorithm is as follows: the input consists in two files representing two

versions of the same document, the output is a delta file representing the changes

that occurred between them.
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In this chapter, we analyze different proposals. We study two dimensions of

the problem: (i) the representation of changes (ii) the detection of changes.

(i) Representing Changes To understand the important aspects of changes rep-

resentation that we consider in this chapter, we recall briefly some possible ap-

plications:

� In Version management [29, 69], the representation should allow for effect-

ive storage strategies and efficient reconstruction of versions of the docu-

ments.

� In Temporal Applications [26], the support for a persistent identification of

XML tree nodes is mandatory since one would like to identify (i.e. trace) a

node through time.

� In Monitoring Applications [27, 84], changes are used to detect events and

trigger actions. The trigger mechanism involves queries on changes that

need to be executed in real-time. For instance, in a catalog, finding the

product of type ’digital camera’ and of which the price has decreased.

The deltas we consider here are XML documents summarizing the changes.

The choice of XML is motivated by the need to exchange, store and query these

changes. Since XML is a flexible format, there are different possible ways of

representing the changes on XML and semi-structured data [23, 63, 69, 114], and

build version management architectures [29]. In Section 5.3, we compare several

change representation models.

The results of our study indicate two main directions to represent changes:

(i) one is to summarize the two versions of the documents and add change

information (e.g. DeltaXML [63], XDL [76]). The change information

represents the operations that transform one version into another.

(ii) the other is to focus on edit operations, i.e. to give a list of edit operations

that transform one version into another (e.g. XUpdate [114], XyDelta [69])

The advantage of (i) is that the summary of the documents gives a useful con-

text to understand change operations. The drawback of (i) is that it (often) lacks

a formal model or mathematical properties (e.g. aggregation), in particular, no

precise framework for version management or even querying has been developed.
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On the other hand, (ii) may provide a better formal model of edit operations. In

(ii), the delta uses identifiers to refer to nodes of the document. The drawback

of (ii) is that such deltas do not contain sufficient information for monitoring or

to support queries , i.e. the document has to be processed. Thus, they are less

intuitive to read and use in simple applications.

(ii) Change Detection In some applications (e.g. an XML document editor) the

system knows exactly which changes have been made to a document, but in our

context, the sequence of changes is unknown. Thus, the most critical component

of change control is the diff module that detects changes between an old version

of a document and the new version. The input of a diff program consists in these

two documents, and possibly their DTD or XMLSchema. Its output is a delta

document representing the changes between the two input documents. Important

aspects are as follow:

� Correctness: A diff is correct if it finds a set of operations that is sufficient

to transform the old version into the new version of the XML document. In

other words, a diff is correct if it misses no changes. For some application,

one may want to trade correctness for performance, for compactness of the

delta or to focus only on certain changes. This is not considered here, all

diff algorithms we present here are correct.

� Minimality: In some applications, the focus will be on the minimality of the

result (e.g. number of operations, edit cost, file size) generated by the diff.

This notion is explained in Section 5.2. Minimality of the result is important

to save storage space and network bandwidth. Also, the effectiveness of

version management depends both on minimality and on the representation

of changes.

� Semantics: Some algorithms consider more than the tree structure of XML

documents. For instance, they may consider keys (e.g. ID attributes defined

in the DTD) and match with priority two elements with the same tag if

they have the same key. For instance, a product node in a catalog

is identified by the value of its name descendant node. In the world of

XML, the semantics of data is becoming extremely important [103] and

some applications may be looking for semantically correct results or impose

semantic constraints. For instance it is considered correct to update the
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price node of a product, but it may be considered incorrect to update the

product’s reference node (product identifier).

� Performance and Complexity: With dynamic services and/or large amounts

of data, good performance and low memory usage become mandatory. For

example, some algorithms find a minimum edit script (given a cost model

detailed in Section 5.2) in quadratic time and space, whereas others run in

linear time (and space).

� “Move” Operations: The capability to detect move operations (see Sec-

tion 5.2) is only present in certain diff algorithms. The reason is that it has

an impact on the complexity (and performance) of the diff and also on the

minimality and the semantics of the result.

To explain how the different criteria affect the choice of a diff program, con-

sider some cooperative work application on large XML documents. The large

XML documents are replicated over the network. We want to enable concurrent

work on these documents and efficiently update the modified parts. Thus, a diff

between XML documents is computed and the delta is used to broadcast changes

to the various copies. Then, changes can be applied (propagated) to the files rep-

licated over the network. When a “small” diff is propagated, (i) the bandwidth cost

is recuded, and (ii) it is less likely that it conflicts with an update on a different

site. On the other hand, if there is little replication (and little risk of conflicts), it is

more important to compute the diff fast than to minimize its size. Note that with

some diff programs, it is even possible to use the support of keys (e.g. support

of DTD ID attributes) to divide the document into finer grain structures, in order

to implement precise locking mecanisms and handle more efficiently concurrent

transactions.

Our study considers several possible design strategies for XML diff tools. We

will see the cost of quadratic algorithm, e.g. MMDiff doesn’t scale up to megabyte

files. We also show the impact of the use of greedy rules (e.g. XyDiff) that save

time, but decrease the minimality of results. Using simple examples, we detail

how the combination of quadratic algorithm with preprocessing steps (e.g. prun-

ing the tree) generates high quality (but not minimal) results. We will also mention

important features of diff tools that allow to improve the accuracy of results.
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Experiment Settings Our comparative study relies on experiments conducted

over XML documents found on the web. Xyleme crawler [119] was used to crawl

more than five hundred millions web pages (HTML and XML) in order to find five

hundred thousand XML documents. Because only part of them changed during

the time of the experiment (several months), our measures are based roughly on

hundred thousand XML documents. Only some experiments were run on the

entire set. Most were run on sixty thousand documents because of the time it

would take to run them on all the available data. It is also interesting to run it on

private data (e.g. financial data, press data). Such data is typically more regular.

For instance, we ran our tests on several versions of XML data from DBLP [66].

We intend to conduct other experiments in the future.

Remark Our work was done primarily for XML documents. It can also be

used for HTML documents by first XML-izing them. For instance, a relatively

easy task consists in properly closing tags. However, change management (de-

tection+representation) for a “true” XML document 1 is semantically much more

informative than for HTML. It includes pieces of information such as the insertion

of particular subtrees with a precise semantics, e.g. a new product in a catalog.

The rest of the chapter is organized as follows. First, we present the data

model, operation model and cost model in Section 5.2. Then, we compare change

representations in Section 5.3. In Section (5.4), we compare change detection

algorithms and their implementation programs. In Section 5.5, we present a per-

formance analysis (time and space). Finally, we study the quality of the results of

diff programs in Section 5.6. The last section concludes the chapter.

5.2 Preliminaries

In this section, we introduce the notions that will be used along the chapter. The

data model we use for XML documents is labeled ordered trees as in [69]. We

also mention some algorithms that support unordered trees.

Operations The change model is based on editing operations as in [69], namely

insert, delete, update and move. There are two possible interpretations for these

operations: Kuo-Chung Tai’s model [99] and Selkow’s model [97].

1or for an HTML document that has been XML-ized using advanced techniques
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In [99], deleting a node means making its children become children of the

node’s parent. For instance, deleting <product> in the subtree

<catalog><product><price value="\$99"/></product></catalog>

yields the result

<catalog><price value="\$99"/></catalog>

This model may not be appropriate for XML documents, since deleting a node

changes its depth in the tree and may also invalidate the document structure ac-

cording to its DTD (or XMLSchema). In general, this model is not appropriate

for object models 2 where the type of objects and relations between them is im-

portant. It seems more appropriate, for instance, to applications such as biology

where XML is used to represent DNA sequences [107].

Thus, for XML data, we use Selkow’s model [97] in which operations are

only applied to leaves or subtrees. In particular, when a node is deleted, the entire

subtree rooted at the node is deleted. This captures the XML semantic better, for

instance removing a product from a catalog by deleting the corresponding subtree.

Important aspects presented in [69] include (i) management of positions in XML

documents (e.g. the position of sibling nodes changes when some are deleted),

and (ii) consistency of the sequence of operations depending on their order (e.g. a

node can not be updated after one of its ancestors has been deleted).

Edit Cost The edit cost of a sequence of edit operations is defined by assigning

a cost to each operation. Usually, this cost is � per node touched (inserted, deleted,

updated or moved). If a subtree with n nodes is deleted (or inserted), for instance

using a single delete operation applied to the subtree root, then the edit cost for

this operation is n. Since most diff algorithms are based on this cost model, we

use it in this study. The edit distance between document A and document B is

defined by the minimal edit cost over all edit sequences transforming A in B. A

delta is minimal if its edit cost is no more than the edit distance between the two

documents.

One may want to consider different cost models. However, some cost mod-

els imply a trivial solution of the diff problem. Consider for instance the case of

assigning cost � � for each edit operation, e.g. deleting or inserting an entire sub-

tree. When two documents are different, a minimal edit script would often consist

2see Document Object Model (DOM) for XML, http://www.w3.org/DOM/
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in the following pair of operations: (i) delete the first document with a single de-

lete operation applied to the document’s root (ii) insert the second document with

a single insert operation.

We briefly mention in Section 5.6 some results based on a cost model where

the cost for insert , delete and update is � per node, whereas the cost for moving

an entire subtree is only � (see next).

The move operation The semantics of move is to identify nodes (or subtrees)

even when their context (e.g. ancestor nodes) has changed. Some of the proposed

algorithms are able to detect move operations between two documents, whereas

others do not. We recall that most formulations of the change detection problem

with move operations are NP-hard [126]. So the drawback of detecting moves

is that the algorithms that can be used in practical time will only approximate

the minimum edit script. In [126], they consider the problem of comparing two

CUAL (Connected, Undirected, Acyclic and Labeled) graphs. By reduction from

exact cover by 3-sets, one can show that finding the distance between two graphs

is NP-hard. They extend this by proposing a constrained distance metric, called

the degree-2-distance, requiring that any node to be inserted (deleted) has no more

than 2 neighbor. In this view, Selkow’s model corresponds to finding the degree-1

distance.

The improvement when using a move operation is that, in some applications,

users will consider that a move operation is more intuitive (or less costly) than a

delete and insert of the subtree. It often corresponds to reality, e.g. in a storage

file-system, moving a directory of files is cheaper than copying (and then deleting)

them, and also cheaper than moving each file one-by-one.

In temporal databases, move operations are important to detect from a se-

mantic viewpoint because they allow to identify (i.e. trace) nodes through time

better than delete and insert operations.

Mapping/Matching In the next sections, we will also use the notion of “map-

ping” between the two trees. Each node in A (or B) that is not deleted (or in-

serted) is “matched” to the corresponding node in B (or A). A mapping between

two documents represents all matchings between nodes from the first and second
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documents. In some cases, a delta is said “minimal” if its edit cost is minimal for

the restriction of editing sequences compatible with a given “mapping”3.

The definition of the mapping and the creation of a corresponding edit se-

quence are part of the “change detection”. The “change representation” consists

in a data model for representing the edit sequence.

5.3 Change Representation models

XML has been widely adopted both in academia and in industry to store and ex-

change data. [26] underlines the necessity for querying semistructured temporal

data. Recent works [26, 63, 29, 69] study version management and temporal quer-

ies over XML documents. Although an important aspect of version management

is the representation of changes, a standard is still missing.

In this section we recall the issues in change representation for XML

documents, and we present the main recent proposals on the topic, namely

DeltaXML [63], XDL [76], XUpdate [114] and XyDelta [69]. Then we give a

summary of the different formats, their features and equivalences between them.

Finally, we present some experiments conducted over Web data.

As previously mentioned, the main motivations for representing changes are:

version management, temporal databases and monitoring data. Here, we ana-

lyze these applications in terms of (i) versions storage strategies and (ii) querying

changes.

Versions Storage Strategies In [28], a comparative study of version man-

agement schemes for XML documents is conducted. For instance, two simple

strategies are as follow : (i) storing only the latest version of the document and

all the deltas for previous versions (ii) storing all versions of the documents, and

computing deltas only when necessary. When only deltas are stored, their size

(and edit cost) must be reduced. For instance, the delta is in some cases larger than

the versioned document. We have analyzed the performance for reconstructing a

document’s version based on the delta. The time complexity is in all cases linear

in the edit cost of the delta. The computation cost for such programs is close to

the cost of manipulating the XML structure (reading, parsing and writing).

3A sequence based on another mapping between nodes may have a lower edit cost
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One may want to consider a flat text representation of changes that can be ob-

tained for instance with the Unix diff tools. In most applications, it is efficient in

terms of storage space and performance to reconstruct the documents. Its draw-

back are: (i) that it is not XML and can not be used for queries (ii) files must

be serialized into flat text and this can not be used in native (or relational) XML

repositories.

Querying Changes We recall here that support for both indexing and persistent

identification is useful. On one hand, labeling nodes with both their prefix and

postfix position in the tree allows to quickly compute ancestor/descendant tests

and thus significantly improves querying [8]. On the other hand, labeling nodes

with a persistent identifier accelerates temporal queries and reduces the cost of

updating an index. In principle, it would be nice to have one labeling scheme that

contains both structure and persistence information. However, [36] shows that this

requires longer labels and uses more space.

Also note that using move operations is often important to maintain persistent

identifiers since using delete and insert does not lead to a persistent identifica-

tion. Thus, the support of move operations improves the effectiveness of temporal

queries.

5.3.1 Change Representation models

We now present change representation models. On one hand, the XML delta

formats XUpdate [114] and XyDelta [69] describe the list of operations that trans-

form one document into another. In these deltas, the nodes of the source and

target documents are identified using XPath expressions (XUpdate) or XIDs (Xy-

Delta). On the other hand, the XML delta format DeltaXML [63] gives a summary

of the source document. This summary is enriched by adding specific elements

and attributes to describe the operations that transform it into the target document

(details below). XDL [76] can be used in these two different ways.

Our examples of deltas represent the changes that occurred between the two

versions of the document presented in Figures 5.1 and 5.2 (pages 84, 85). The

notion of XID and XDL Path is detailed below. Note also that the problem of

ignorable white spaces is a technical issue that sometimes becomes hard to deal

with. In this section, we ignore this issue (without loss of generality) and we only

consider the “real” content of XML documents.
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| XID | XDL Path
<catalog> | 15 | .
<product> | 7 | /1
<name> | 2 | /1/1
Notebook | 1 | /1/1/1

</name> | |
<description> | 4 | /1/2
2200MHz Pentium4 | 3 | /1/2/1

</description> | |
<price> | 6 | /1/3
$1999 | 5 | /1/3/1

</price> | |
</product> | |
<product> | 14 | /2
<name> | 9 | /2/1
Digital Camera | 8 | /2/1/1

</name> | |
<description> | 11 | /2/2
Fuji FinePix 2600Z | 10 | /2/2/1

</description> | |
<status> | 13 | /2/3
Not Available | 12 | /2/3/1

</status> | |
</product> | |

</catalog> | |

(Note: XID and XDL-Path are node identifiers)

Figure 5.1: First version of a document

DeltaXML In [63] (or similarly in [26]), the delta information is stored in a

“summary” of the original document by adding “change” attributes. It is easy

to present and query changes on a single delta, but slightly more difficult to ag-

gregate deltas or issue temporal queries on several deltas. The delta has the same

look and feel as the original document, but it is not strictly validated by the doc-

ument’s DTD. The reason is that while most operations are described using at-

tributes (with a deltaxml namespace), a new type of tag is introduced to de-

scribe text nodes updates. More precisely, for obvious serialization/parsing reas-

ons, the old and new values of a text node cannot be put side by side, and the tags

<deltaxml:oldtext> and <deltaxml:newtext> are used to distinguish

them. A specific DTD is generated for each input document DTD.
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<catalog>
<product>
<name>Notebook</name>
<description>2200MHz Pentium4</description>
<price>$1999</price>

</product>
<product>
<name>Digital Camera</name>
<description>Fuji FinePix 2600Z</description>
<price>$299</price>

</product>
</catalog>

Figure 5.2: Second version of the document

<catalog
xmlns:deltaxml="http://www.deltaxml.com/ns/well-formed-

delta-v1"
deltaxml:delta="WFmodify" >
<product deltaxml:delta="unchanged"/>
<product deltaxml:delta="WFmodify">

<name deltaxml:delta="unchanged"/>
<description deltaxml:delta="unchanged"/>
<deltaxml:exchange>

<deltaxml:old>
<status deltaxml:delta="delete">Not Avail-

able</status>
</deltaxml:old>
<deltaxml:new>

<price deltaxml:delta="add">$299</price>
</deltaxml:new>

</deltaxml:exchange>
</product>

</catalog>

Figure 5.3: DeltaXML delta

There is some storage overhead when the change rate is low because: (i) posi-

tion management is achieved by storing the root of unchanged subtrees (ii) change

status is propagated to ancestor nodes. The delta correspondig to Figures 5.1

and 5.2 is presented in Figure 5.3.

Note that it is also possible to store the whole document, including unchanged

parts, along with changed data.
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XyDelta In [69], every node in the original XML document is given a unique

identifier, namely XID (see Figures 5.1 and 5.2), according to some identification

technique called XidMap. The XidMap gives the list of all persistent identifiers

in the XML document in the postfix order of nodes (i.e. descendant first). Then,

the delta represents the corresponding operations: identifiers that are not found in

the new (old) version of the document correspond to nodes that have been deleted

(inserted)4. The example in Figures 5.1 and 5.2 is as follows: nodes 12-13 (i.e.

from 12 to 13) that have been deleted are removed from the XidMap of the second

version, while new identifiers (e.g. 16-17) are assigned to inserted nodes. The

delta corresponding to Figures 5.1 and 5.2 is:

<xydelta

v1_XidMap="(1-15)"

v2_XidMap="(1-11;16-17;14-15)">

<delete xid="(12-13)" parent="14" position="3">

<status>Not Available</status>

</delete>

<insert xid="(16-17)" parent="14" position="3">

<price>$299</price>

</insert>

</xydelta>

As shown in Chapter 4, XyDeltas have nice mathematical properties, e.g. they

can be aggregated, inverted and stored without knowledge about the original doc-

ument. Also the persistent identifiers and move operations are useful in temporal

applications. The drawback is that a XyDelta does not contains contexts (e.g.

the content and value of ancestor nodes or siblings of nodes that changed) which

are sometimes necessary to understand the meaning of changes or present query

results to the users. Therefore, the context has to be obtained by processing the

document.

XUpdate [114] provides means to update XML data, but it misses a more pre-

cise framework for version management or to query changes. In the same spirit as

XyDelta, it describes the edit operations. The difference is that nodes are identi-

fyied by a path expression instead of their postfix position. While readability is

4Move and update operations are described in Chapter 4 (see [69]).
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improved, the original document is still necessary to know the exact context of

operations. Since path expression can be very long, the size of the delta may be

larger than other formats. On the other hand, these path expressions allow to effi-

ciently monitor changes in specific parts of the document. Note also that it allows

the use of variables, but a more precise proposal is clearly needed for such an

advanced feature. Another drawback is that XUpdate does not support backward

deltas. The delta correspondig to Figures 5.1 and 5.2 is:

<xupdate:modifications version="1.0"

xmlns:xupdate="http://www.xmldb.org/xupdate">

<xupdate:insert-after select="/catalog[1]/product[2]/description[1]" >

<xupdate:element name="price">

$299

</xupdate:element>

</xupdate:insert-after>

<xupdate:remove select="/catalog[1]/product[2]/status[1]" />

</xupdate:modifications>

Microsoft XDL XML Diff Language (XDL) [76] is a proprietary XML-based

language for describing differences between two XML documents. An instance of

XDL is called the XDL diffgram. This language is the most recent proposal. In the

spirit of XUpdate and XyDelta , XDL only describes the edit operations. However,

the “target” position of insert operations relies on the diffgram tree structure (in

the spirit of DeltaXML). More precisely, the position where a node is inserted is

given by the position of the corresponding operation in the diffgram5.

On the other hand, the “source” nodes (e.g. deleted nodes) are identified us-

ing path descriptors. The path descriptor language is not XPath: the element

nodes name is not mentioned, only the node’s positions are listed. For instance,

./2 refers to the second child of a node. This results on average in shorter path

descriptors than XPath. However, the drawback compared to XUpdate is that the

path descriptors are not sufficient to monitor changes (the document has to be pro-

cessed). A node match command is also used to identify a node and declare it the

“root” of a local context. For instance, the path descriptor:

<xd:delete match="/2/3" />

5In XUpdate or XyDelta, a node identifier is used to describe the target position
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may be replaced by

<xd:node match="2">

<xd:delete match="3" />

</xd:node>

Note that in this case, the identification of “source” nodes is similar to

DeltaXML, since the diffgram tree structure summarizes the tree structure of the

original document.

As in XyDelta, move operations are supported. They are described using an

additional operation descriptor that connect a pair of insert and delete operations.

A copy operation is also used to save space in some cases. XDL is validated

by a DTD. Again, a drawback is that backward deltas are not supported. Like

DeltaXML, the model lacks more precise version management features (aggrega-

tion, persistent identifiers). A nice feature of XDL is the use of a signature (hash

value) to identify the source document on which the diffgram can be applied. This

feature could easily be added to the other formats. The diffgram (delta) corres-

ponding to Figures 5.1 and 5.2 is:

<xd:xmldiff

srcDocHash="......"

xmlns:xd="http://schemas.microsoft.com/xmltools/2002/xmldiff" >

<xd:node match="1">

<xd:node match="2">

<xd:change match="3" name="price">

<xd:change match="1">$299

</xd:change>

</xd:change>

</xd:node>

</xd:node>

</xd:xmldiff>

An important difference with other change representation language is that the

insert and delete operations are defined according to Tai’s model (see Section 5.2).

The set of operations is larger than for other languages which use Selkow’s model,

where deleted and insert operations are only applied on leaves or subtrees. How-

ever, other languages can represent Tai’s operations as a composition of their own
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operations. For instance, Tai’s delete of a node n is replaced by deleting the entire

subtree rooted at n, and their inserting the child subtrees of n as children of the

parent of n. A drawback, in that case, is that the persistent identification of nodes

is lost. With languages that support move operations, e.g. XyDelta, the persistent

identification of nodes is maintained.

Others Languages Dommitt [46] representation of changes is in the spirit of

DeltaXML. However, surprisingly, instead of using change attributes, new node

types are created. For instance, when a book node is deleted, a xmlDiffDe-

letebook node is used. A drawback is that the delta (and its DTD) is signific-

antly different from the original documents (and their DTD).

5.3.2 Summary

During this study, we tested a few other change formats that are not mentioned

here. Some are comparable to those presented here, others turned out to be too

limited to really support the tree structure of XML. In the context of applications

that we mentioned previously, we summarize next the important aspects of the

change formats.

� Monitoring: DeltaXML and XUpdate make it easier to monitor changes

because the deltas contain the name and value of all ancestor nodes of nodes

that changed. Thus, processing of simple path queries on changing nodes

can be easily supported. Only DeltaXML proposes a method for having

both the changed and unchanged data in a single XML document. This is

important for any uses where the unchanged data is needed also, for instance

displaying changes to a user in the context of unchanged data.

� Temporal Queries: Only XyDelta manages explicitely the persistant iden-

tifiers. For other formats, the identifiers have to be infered by processing

the deltas and the source documents, which is costly. We believe that such

identifiers should be used to improve the efficiency of temporal queries. An

identification mecanism could be stored along with the documents as it is

done currently in XyDelta, where an XidMap file is created for each docu-

ment.

� Storage: Experiments (see Section 5.3.3) show that XUpdate, XyDelta

and XDL save storage space when few changes occur on the document.
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The reason is that these formats only list change operations, whereas the

DeltaXML gives a summary of the full document. However, the storage

space is similar when a fair amount of changes occurs (e.g. 15 percent).

In all cases, validation by a DTD (or XMLSchema) is proposed or may be

obtained. It would be interesting to have deltas that are validated by the exact

same DTD as the document, but as mentioned previously, a difficulty is then to

describe the updates of text nodes (e.g. DeltaXML).

Another important aspect to consider is the formal equivalence (or not)

between the various change representations. We focus here on the core definitions

of the XML formats presented previously. For instance, we ignore advanced fea-

tures of XUpdate (e.g. the use of variables) since they are not clearly defined (and

we found no implementation or tools that use them). In this case, DeltaXML and

XUpdate are equivalent. XDL subsumes them. It adds information about “move”

operations defined as pair of insert and delete operations. XyDelta subsumes

XDL. It adds information to delete operations that can be used to apply the delta

backward.

However, all formats could be easily extended to support “move” operations as

well as “backward” deltas. In a similar way, all formats could be easily extended

to support nice features such as XDL verification of the source document using a

hash value. Thus, one may want to consider all these formats as “almost” equival-

ent. So, we believe that any one of them could serve as a basis of a standard for

representing XML changes.

5.3.3 Change Representation Experiments

In this section, we present experiments on the space usage of change representa-

tions. Consider a given set of operations transforming one document into another.

Our experiments conducted over a few thousand files showed that the size of the

various XML formats is essentially similar, up to a constant factor. This factor

(roughly 2) should not be considered important since it depends on the XML stor-

age architecture (serialized files, native XML or relational).

We noted that XDL deltas obtained using Microsoft Diff and Merge Tool [77]

are sometimes a bit smaller than others. In most cases, the reason is that the

change model is different, in particular it allows insert and delete operations ac-

cording to Tai’s model (see Section 5.2).
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To illustrate our work, we compare in Figure 5.4 (page 91) the space usage

for the two main approches: list of operations vs. summary of the documents.

Figure 5.4 shows the size of a delta represented using DeltaXML or XyDelta as

function of the edit cost of the delta. The delta cost is defined according to the “�

per node” cost model presented in Section 5.2. Each dot represents the average6

delta file size for deltas with a given edit cost. It confirms clearly that DeltaXML is

larger for lower edit costs because it describes many unchanged elements. On the

other hand, when the edit cost becomes larger, its size is comparable to XyDelta.

The deltas in this figure are the results of more than twenty thousand XML diffs,

roughly twenty percent of the changing XML that we found on the web.
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Figure 5.4: Size of the delta files

5.4 Diff calculation

In this section, we present an overview of previous works in this domain. The

algorithms we describe are summarized in Figure 5.6 (page 101).

6Although fewer dots appear in the left part of the graph, they represent each the average over
several hundred measures.
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A diff algorithm consists in two parts: first it matches nodes between the two

(versions of the same) document(s). Second it generates a document, namely a

delta, representing a sequence of changes compatible with the matching.

The goal of our survey is to compare both the performance and the quality

of several XML diff tools. In the next sections, we present experiments on the

performance (see Section 5.5) and the quality (see Section 5.6) of the tools. In this

section, we compare the tools based on the formal description of their algorithms

(if available), and in particular we consider the upper-bound complexity and the

minimality of the delta results.

Following subsections are organized as follows. First, we introduce the String

Edit Problem. Then, we consider optimal tree pattern matching algorithms that

rely on the string edit problem to find the best matching. Finally we consider other

approaches that first find a “meaningful” mapping between the two documents,

and then generate a compatible delta.

5.4.1 Introduction: The String Edit Problem

Longest Common Subsequence (LCS) In a standard way, the diff tries to find

a minimum edit script between two strings. It is based on edit distances and the

string edit problem [11, 65, 40, 106]. Insertion and deletion correspond to in-

serting and deleting a (single) symbol in a string. A cost (e.g. �) is assigned to

each operation. The string edit problem corresponds to finding an edit script of

minimum cost that transforms a string x into a string y. A solution is obtained by

considering the cost for transforming prefix substrings of x (up to the i-th symbol)

into prefix subtrings of y (up to the j-th symbol). On a matrix ����jxj� � ����jyj�, a

directed acyclic graph (DAG) representing all operations and their edit cost is con-

structed. Each path ending on �i� j� represents an edit script to transform x����i�

into y����j�. The minimum edit cost cost�x����i� � y����j�� is then given by the

minimal cost of these three possibilities:

cost�deleteCharSymbol�x�i��� � cost�x����i � ��� y����j��

cost�insertCharSymbol�y�j��� � cost�x����i� � y����j � ���

cost�updateCharSymbol�x�i�� y�j��� � cost�x����i � ��� y����j � ���
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Note that for example the cost for updateCharSymbol�x�i�� y�j�� is zero when

the two symbols are identical. The edit distance between x and y is given by

cost�x����jxj� � y����jyj��, and the minimum edit script by the corresponding

path.

The sequence of nodes that are not modified by the edit script (nodes on di-

agonal edges of the path) is a common subsequence of x and y. Thus, finding

the minimal delta is equivalant to finding the “Longest Common Subsequence”

(LCS) between x and y. Note that each node in the common subsequence defines

a matching pair between the two corresponding symbols in x and y.

The space and time complexity are O�jxj � jyj�. This algorithm has been im-

proved by Masek and Paterson using the “four-russians” technique [74] in O�jxj �

jyj�logjxj� and O�jxj � jyj � log�logjxj��logjxj�worst-case running time for finite

and arbitrary alphabet sets respectively.

D-Band Algorithms In [81], E.W. Myers introduced a O�jxj � D� algorithm,

where D is the size of the minimum edit script. Such algorithms, namely D-

Band algorithms, consist in computing cost values only close to the diagonal of

the matrix. A diagonal k is defined by �i� j� couples with the same difference

i � j � k, e.g. for k � 
 the diagonal contains �
� 
�� ��� ��� ��� ��� ���. When

using the usual “� per node” cost model, diagonal areas of the matrix (e.g. all

diagonals from �K to K) contain all edit scripts of cost lower than a given value

K. Obviously, if a valid edit script of cost lower than K is found to be minimum

inside the diagonal area, then it must be the minimum edit script. When k is zero,

the area consists solely in the diagonal starting at �
� 
�. By increasing k, it is then

possible to find the minimum edit script in O�max�jxj � jyj� �D� time. Using a

more precise analysis of the number of deletions, [111] improves significantly this

algorithm performance when the two documents lengths differ substantially. This

D-Band technique is used by the famous GNU diff [47] program for text files.

5.4.2 Optimal Tree Pattern Matching

Serialized XML documents may be considered as strings, and thus we could use

a “string edit” algorithm to detect changes. This may be used as a raw storage

and raw version management, and can indeed be implemented using GNU diff

that only supports flat text files. However, in order to support better services, it is

preferable to consider specific algorithms for tree data that we describe next. The
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complexity we mention for each algorithm is relative to the total number of nodes

in both documents. Note that the number of nodes is linear in the document’s file

size.

Previous Tree Models Kuo-Chung Tai [99] gave a definition of the edit distance

between ordered labeled trees and the first non-exponential algorithm to compute

it. Considering two documents D� and D�, the time and space complexity is

quasi-quadratic: O�jD�j � jD�j � d�D��� � d�D����, where d�D�� and d�D��

represent the depth of the two trees. Zhang and Shasha [123, 124] proposed an

algorithm with similar methods. The main difference is that it runs in a postorder

traversal of the tree (child nodes are visited first, instead of preorder where parent

nodes are visited first). The time complexity is O�jD�j � jD�j � d�D�� � d�D���

and the space complexity is O�jD�j � jD�j�. This algorithm is used by Logilab

XML Diff and Microsoft XML Diff that we present next. In the same spirit is

Yang’s [121] algorithm to find the syntactic differences between two programs.

In Selkow’s variant [97], which is closer to XML, the LCS algorithm described

previously is used on trees in a recursive algorithm. Considering two documents

D� and D�, the time complexity is O�jD�j � jD�j�.

MMDiff and XMDiff In [22], S. Chawathe presents an external memory al-

gorithm XMDiff (based on a main memory version named MMDiff) for ordered

trees in the spirit of Selkow’s variant. Intuitively, the algorithm constructs a mat-

rix in the spirit of the “string edit problem”, but some edges are removed to enforce

that deleting (resp. inserting) a node will delete (resp. insert) the subtree rooted

at this node. More precisely, (i) diagonal edges exist if and only if corresponding

nodes have the same depth in the tree (ii) horizontal (resp. vertical) edges from

�x� y� to �x � �� y� exists unless the depth of node with prefix label x � � in D�

is lower than the depth of node y � � in D�. For MMDiff, the CPU and memory

costs are quadratic O�jD�j � jD�j�. With XMDiff, memory usage is reduced but

IO costs become quadratic.

Unordered Trees In XML, we sometimes want to consider the tree as un-

ordered. The general problem becomes NP-hard [125], but by constraining the

possible mappings between the two documents, K. Zhang [122] proposed an

algorithm in quasi quadratic time. In the same spirit is X-Diff [109] from the

project NiagaraCQ [27]. In these algorithms, for each pair of nodes from D� and
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D� (e.g. the root nodes), the distance between their respective subtrees is ob-

tained by finding the minimum-cost mapping for matching children (by reduction

to the minimum cost maximum flow problem [122, 109]). More precisely, the

complexity is O�jD�j � jD�j � �deg�D��� deg�D��� � log�deg�D��� deg�D���,

where deg�D� is the maximum outdegree (number of child nodes) of D. We

do not consider these algorithms since we did not experiment on unordered

XML trees. However, their characteristics are similar to MMDiff and both find a

minimum edit script in quadratic time.

DeltaXML DeltaXML [44] is one of the nicest products on the market. It uses

a similar technique based on longest common subsequence computations. It uses

Wu [111, 81] D-Band algorithm to run in quasi-linear time. We believe7 that the

complexity is O�jxj � D�, where jxj is the total size of both documents, and D

the edit distance between them. The recent versions of DeltaXML support the

addition of keys (either in the DTD or as attributes) that can be used to enforce

correct matching (e.g. always match a person by its name attribute). DeltaXML

also supports unordered XML trees.

Because Wu’s algorithm is applied at each level separately, the result is not

strictly minimal. Note that real-world experiments showed that the result is in

general (90 percent) strictly minimal. To understand the algorithm, we provide

here an example of non-minimal result that is obtained when diffing the following

documents:

First Document:

<top>

<a><b>text</b><b>text</b><b>text</b><b>text</b></a>

<a><b>text</b></a>

<a><b>text</b></a>

</top>

Second Document:

<top>

<a><b>new text</b></a>

<a><b>updated text</b><b>text</b><b>text</b><b>text</b></a>

<a><b>updated text</b></a>

<a><b>updated text</b></a>

7The algorithm has not been published
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</top>

The a and b nodes are mapped by pair in the order they appear, thus resulting

in many operations (17 in total) to update their respective content. On the contrary,

the minimal editing script consists in 6 operations.

Logilab XmlDiff In [67], Logilab proposes an Open Source XML diff. It offers

two different algorithms. For large files, it uses Fast Match Edit Script [25] (from

S. Chawathe and al.). As previously, this algorithm applies a LCS computation

(using Myer’s algorithm) at each level and for each label. Consequently, it runs in

O�l � jD�j � e�, but does not find the minimal edit script (note that l is the number

of node labels, and e the edit distance between the two documents).

The second algorithm is Zhang and Shasha tree-to-tree correction algorithm

(mentioned previously). It finds a minimal edit script considering insert and de-

lete operations according to Tai’s model (see Section 5.2). More precisely, they

use an extended version of [123, 124] that has been proposed in [13]. This ver-

sion improve [123, 124] by adding a swap operation between a node and its next

sibling. The complexity of this algorithm is quasi-quadratic, but the performance

of the tool is slow8. Moreover, the implementation that we tested did not work

for a large part of our test files. To represent changes, two options are supported:

(i) XUpdate [114] language (ii) an internal format. We do not study the internal

format since it is not XML based, and thus does not allow for further querying or

native storage.

Microsoft XmlDiff In the same spirit, Microsoft recently proposed an XML

Diff and Patch toolset [77]. It is free and the source code is freely available.

The delta format is Microsoft XDL. This tool is in the spirit of XML treediff [56]

developed by IBM and that was based on [38] and [123, 124]. Two diff algorithms

are proposed. The first one is a fast tree-walking algorithm (in the same spirit as

Fast Match). To be fast, they use a similar formula as XyDiff (see next) to limit

the number of nodes visited during the tree walk.

The second algorithm is an implementation of Zhang and Shasha al-

gorithm [123, 124]. As previously, note that the editing model considered

here is Tai’s model (see Section 5.2). Before any of the two algorithms is used,

a preprocessing phase is applied to the documents, which consists in matching

8there may also be implementation issues
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identical subtrees (based on their hash signature) in the spirit of XyDiff (see next).

Matched nodes are then removed, and the algorithm choosen is then applied on

the pruned tree. This improves significantly the performance, in particular for

Zhang-Shasha algorithm. On the positive side, the result is that move operations

are supported (based on the preprocessing matched nodes). On the negative side,

the delta obtained is not minimal, as shown in the following example.

Source Document | Target Document
|

<root> | <root>
<a> | <a>
<x/> | <x2/>
<y/> | <x/>

</a> | <y2/>
<a> | <y/>
<x/> | </a>
<x2/> | <a>
<y/> | <x/>
<y2/> | <y/>

</a> | </a>
</root> | </root>

Figure 5.5: Two versions of a document

Example Consider Figure 5.5 (page 97). The best choice is to move x2 and y2.

However, when considering move operations, finding the minimum edit script is in

general NP-hard (see next). When move operations are ignored, some algorithms

(e.g. Zhang-Shasha or MMDiff) find the minimum edit script. In this example, it

consists in deleting x2,y2 in the source document and then inserting x2,y2 in

the right place. Microsoft XmlDiff uses such an algorithm, but due to the prelim-

inary pruning phase, the result is not minimal. More precisely, the two identical

subtrees (<a><x/><y/></a>) in both documents are matched during the prun-

ing phase, and as a consequence, a different edit script is found. It applies all

modifications on the second subtree, and requires an additional move operations

to swap the two subtrees. We consider in next section algorithms that support

move operations.
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5.4.3 Tree pattern matching with a move operation

The main reason why few diff algorithms supporting move operations have been

developed is that most formulations of the tree diff problem are NP-hard [126, 24]

(by reduction from the “exact cover by three-sets”). One may want to convert a

pair of delete and insert operations applied on a similar subtree into a single move

operation. But the result obtained is in general not minimal, unless the cost of

move operations is strictly identical to the total cost of deleting and inserting the

sutree.

LaDiff Recent work from S. Chawathe includes LaDiff [25, 24], designed for

hierarchically structured information. It introduces a matching criteria to compare

nodes, and the overall matching between both versions of the document is decided

on this base. A minimal edit script (according to the matching) is then constructed.

Its cost is in O�n � e � e�� where n is the total number of leaf nodes, and e a

weighted edit distance between the two trees. Intuitively, its cost is linear in the

size of the documents, but quadratic in the number of changes between them. Note

that in terms of worst-case bounds, when the change rate is large the cost becomes

quadratic in the size of the data. Since we do not have an XML implementation

of LaDiff, we could not include it in our experiments.

XyDiff has been presented in Chapter 3 and in [35]. This tool is free and Open

Source. XyDiff is a fast algorithm which supports move operations and XML fea-

tures like the DTD ID attributes. Intuitively, it matches large identical subtrees

found in both documents, and then propagates matchings. A first phase con-

sists in matching nodes according to the key attributes. Then it tries to match

the largest subtrees and considers smaller and smaller subtrees if matching fails.

When matching succeeds, parents and descendants of matched nodes are also

matched as long as the mappings are unambiguous. E.g., an unambiguous case

is when two matched nodes have both a single child node with a given tag name.

During the tree walk, the number of nodes visited is limited according to the “im-

portance” (e.g. size) of the current subtree. This results in an upper bound (time

and space) for the algorithm that is proved [35] to be no more than O�n � log�n��,

where n is the size of the documents (e.g. total size of files). This algorithm does

not, in general, find the minimum edit script.
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5.4.4 Other Tools

Sun also released an XML specific tool named DiffMK [78] that computes the

difference between two XML documents. This tool is based on the Unix standard

diff algorithm, and uses a list description of the XML nodes.

In the same spirit, DecisionSoft proposes an Open Source XML diff pro-

gram [43]. The program uses a linear representation of the XML document, i.e.

the XML document is printed as text, and each printed line is considered as a

node. Then, the Unix diff command is executed, and it finds which lines have

been inserted or deleted. Consider the following document, in which we delete

the first author subtree and the phone node in the second subtree:

<author>

<name>Stefan Hellkvist</name>

</author>

<author>

<name>Magnus Ljung</name>

<phone/>

</author>

The resulting delta is as follows:

<author>

DELETE <name>Stefan Hellkvist</name>

DELETE </author>

DELETE <author>

<name>Magnus Ljung</name>

DELETE <phone/>

</author>

On the serialized (flat) file, no changes are missed. However, this example

shows that the tree structure of XML is not used. More precisely, we see that

two author subtrees are merged by the deletion of two lines: </author> and

<author>. Indeed, the notion of deleting a </author> line of text does not (in

general) translate well into XML or tree operations. We consider that this result is

not semantically “correct” in the context of our survey. These tools may be used

for storage compression but can not be used for querying changes. Moreover,

when we experimented with them, we found that the versions available at that
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time did not scale well to larger XML files. Thus, we did not include them in the

speed and quality comparison.

5.4.5 Summary of tested diff programs

As previsouly mentioned, the algorithms are summarized in Figure 5.6 (page 101).

The time cost given here (quadratic or linear) is a function of the data size, and

corresponds to the case when there are few changes (i.e. D �� jxj� jyj).

For GNU diff, we do not consider minimality since it does not support XML

(or tree) editing operations. However, we mention in Section 5.6 some analysis of

the result file size.

5.5 Experiments: Speed and Memory usage

As previously mentioned, our XML test data has been downloaded from the web.

The files found on the web are on average small (a few kilobytes). To run tests on

larger files, we used large XML files from DBLP [66] data source. We used two

versions of the DBLP source, downloaded at an interval of one year.

The measures were conducted on a Linux system. Some of the XML diff tools

are implemented in C++, whereas others are implemented in Java. Let us stress

that we ran tests that show that these algorithms compiled in Java (Just-In-Time

compiler) or C++ run on average at the same speed, in particular for large files.

For time reasons, we did not include Microsoft Xml Diff in Figure 5.7. Our ex-

periments indicate that the performance of their Tree-Walking algorithm is similar

to XyDiff, and the performance of Zhang-Shasha algorithm is (on average) similar

to DeltaXML.

For space reasons, we didn’t include Logilab Tree-Walking algorithm. It has

roughly the same speed than MMDiff. A reason is that it uses a simple (and quad-

ratic) implementation of the LCS at each level.

Let us analyze the behaviour of the time function plotted in Figure 5.7

(page 102). It represents, for each diff program, the average computing time

depending on the input file size. On the one hand, XyDiff and DeltaXML are

quasi-linear, as well as GNU Diff. On the other hand, MMDiff increase rate

corresponds to a quadratic time complexity. When handling medium files (e.g.

hundred kilobytes), there are orders of magnitude between the running time of

linear vs. quadratic algorithms.
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For MMDiff, memory usage is the limiting factor since we used a 1Gb RAM

PC to run it on files up to hundred kilobytes. For larger files, the computation time

of XMDiff (the external-memory version of MMDiff) increases significantly when

disk accesses become more and more intensive.

In terms of implementation, GNU Diff is much faster than others because it

doesn’t parse or handle XML. This should be linked to experiments on XyDiff that

showed that �
 percent of the time is spent in the XML parser. This makes GNU

Diff very performant for simple text-based version management schemes.
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Figure 5.7: Speed of different programs

A more precise analysis of DeltaXML results is depicted in Figure 5.8

(page 103). Its shows that although the average computation time is linear, the

results for some documents are significantly different. Indeed, the computation

time is almost quadratic for some files. We found that it corresponds to the worst

case for D-Band algorithms: the edit distance D (i.e. the number of changes)

between the two documents is close to the number of nodes N . For instance, in

some documents, 	
 percent of the nodes changed, whereas in other documents

less than � percent of the nodes changed. This may be a slight disadvantage for

applications with strict time requirements, e.g. computing the diff over a flow of

crawled documents as in NiagaraCQ [27] or Xyleme [84]. On the contrary, for
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MMDiff and XyDiff, the variance of computation time for all the documents is

small. This shows that their average complexity is equal to the upper bound.
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Figure 5.8: Focus on DeltaXML speed measures

5.6 Quality of the result

The “quality” study in our benchmark consists in comparing the sequence of

changes generated by the different algorithms. We used the result of MMDiff and

XMDiff as a reference because these algorithms find the minimum edit script.

Thus, for each pair of documents, the quality for a diff tool (e.g. DeltaXML) is

defined by the ratio

r �
C

Cref

where C is the delta edit cost and Cref is MMDiff delta’s edit cost for the same

pair of documents. A quality equals to one means that the result is minimum

and is considered “perfect”. When the ratio increases, the quality decreases. For

instance, a ratio of � means that the delta is twice more costly than the minimum

delta. In our first experiments, we didn’t consider move operations. This was done

by replacing for XyDiff each move operation by the corresponding pair of insert
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and delete . In this case, the cost of moving a subtree is identical to the cost of

deleting and inserting it.

In Figure 5.9 (page 104), we present an histogram of the results, i.e. the num-

ber of documents in some range of quality. XMDiff and MMDiff do not appear

on the graph because they serve as reference, meaning that all documents have

a quality strictly equal to one. GNU Diff do not appear on the graph because

it doesn’t construct XML (tree) edit sequences. The results of Microsoft Diff and

Logilab Diff do not appear on the graph because they use a different change model

(Tai’s operations).

These results in Figure 5.9 show that:

� (i) DeltaXML: For most of the documents, the quality of DeltaXML result

is perfect (strictly equal to 1). For the others, the delta is on average thirty

percent more costly than the minimum.

� (ii) XyDiff: Almost half of the deltas are less than twice more costly than

the minimum. The other half costs on average three times the minimum.
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Figure 5.9: Quality Histogram

Delta files size (without move) In terms of file sizes, we also compared the dif-

ferent delta documents, as well as the flat text result of GNU Diff. The result diff
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files for DeltaXML, GNU Diff and XyDiff have on average the same size. The res-

ult files for MMDiff are on average twice smaller (using a XyDelta representation

of changes). The result files of Microsoft Diff are also on average twice smaller.

The reason is often the use of Tai’s change model which results in shorter edit

scripts. Another reason is the support of move operations.

Using “move” We also conducted experiments by considering move operations

and assigning them the cost �. Intuitively this means that move is considered

cheaper than deleting and inserting a subtree, e.g. moving files is cheaper than

copying them and deleting the original copy. Only XyDiff and Microsoft XmlDiff

detect move operations. On average, XyDiff performs better and becomes better

than the reference for fifteen percent of the documents, and in particular for large

files. The results of Microsoft Diff often contain move operations that improve

their accuracy: with limited human checking of the results we found that, for

large files, half of the edit scripts are smaller (about a half) than the reference.

Finally, note that this quality measure focuses on the minimality of results.

In some applications, the semantics of the results is more important. But the

semantic value can not be easily measured. An interesting aspect is the support of

(semantic) matching rules by some programs (DeltaXML, XyDiff). More work is

clearly needed in the direction of evaluating the semantic quality of results. We

also intend to conduct experiments on LaDiff [25] which is a good example of

criteria-based mapping and change detection.

5.7 Conclusion

In this Chapter, we described existing works on the topic of change detection in

XML documents.

We first presented recent proposals for representing changes, and compared

their features through analysis and experiments. We believe that more work is

needed to propose a framework for version management and querying changes

according to the proposed change languages. Persistant identifiers (as in Xy-

Delta) are an important aspect. As one should expect, languages focusing on

edit operations (e.g. XUpdate, XyDiff) are slightly more compact than languages

summarizing the document (e.g. DeltaXML, XDL). But the latter are more easily

integrated in simple applications, such as monitoring. Important features should
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also be considered, like the support of move operations (e.g. XDL, XyDelta) or

backward deltas. At the cost of little improvements, the languages presented here

are close to be equivalent. It would be interesting to have a common standard.

The second part of our study concerns change detection algorithms. We com-

pared two main approaches, the first one consists in computation of minimal edit

scripts, while the second approach relies on meaningfull mappings between docu-

ments. We underlined the need for semantical integration in the change detection

process. The study and experiments presented show (i) a significant quality ad-

vantage for minimal-based algorithms (MMDiff, DeltaXML and Microsoft Diff

(ZhangShasha)) (ii) a dramatic performance improvement with linear complexity

algorithms (GNU Diff, XyDiff, Microsoft TreeWalking, DeltaXML9).

On one hand, only MMDiff finds the exact minimal edit script, but it does not

scale to large files (e.g. 1Mb). Moreover, only Tree-Walking algorithms (GNU

Diff, XyDiff, Microsoft TreeWalking) always run in linear time, but the quality of

their results is lower. DeltaXML runs on average in linear time, but the cost may

be quadratic for some files.

On the other hand, DeltaXML and Microsoft Zhang-Shasha offer good com-

promises to find high-quality deltas. Both run on average in quasi linear time,

although they may take longer for some large files. The main difference between

them is the change model used. The one used in DeltaXML may be better for

some XML documents, whereas the change model used in Microsoft Diff often

results in smaller deltas.

We also noted that flat text based version management (GNU Diff) still makes

sense with XML data for performance critical applications.

Although the problem of “diffing” XML (and its complexity) are better

and better understood, there is still room for improvement. In particular, diff

algorithms could take better advantage of semantic knowledge that we may have

on the documents or may have infered from their histories or their DTD.

9linear time on average, but significantly more for some files
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Chapter 6

Monitoring XML

Abstract In previous chapter, we presented state-of-the art tools for detecting

and representing changes in XML. This work is in the context of change-control for

semi-structured data. In this chapter, we focus on the ’control’ part: we present al-

gorithms and tools for continuous queries on XML data that have been developed

in the context of the Xyleme project [117]. These tools have been transfered to the

industry [119].

This work has been conducted with the help of Benjamin Nguyen, Serge Abite-

boul and Mihai Preda. In particular, the subscription system has been presented

in [84] by Benjamin Nguyen. Benjamin Nguyen was in charge of the system’s

architecture, and implemented the first prototypes with the help of Jeremy Jouglet

and Mihai Preda. My contributions where the definition, design and implementa-

tion of the Alerters.

6.1 Introduction

Our system is a scalable architecture that enables the notification of users (or

applications) when specific events are detected. The important features of this

system are:

� Management of subscriptions by a large number of users

� Acquisition of the XML data to be processed

� Processing of user queries on the data, with extensive sharing of redundant

computations among various subscriptions.
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� Preparing and sending notification reports to users (or applications) depend-

ing on their interests and their subscriptions

The Alerters are modules that process documents in order to detect specific

small-grain events, namely atomic events, such as the presence of a certain

keywords. The conjunction of such events leads to the trigger of notification

reports, namely complex events, as defined by the users.

The definition of the Alerters consists in three important aspects:

� Defining the service. This means defining with kind of atomic events will be

detected. For each kind of events, for instance keywords detection, the alert-

ers will receive the different events registrations depending on users sub-

scriptions. For instance, a user subscription may contain different atomic

events and may lead to the registration of three different words: inria, Xy-

leme and XML.

� The design and implementation of the algorithms that implement the event

detection of a data flow. The alerters will have to process hundred of docu-

ments per second.

� The definition of a scalable architecture in order to: (i) increase the pro-

cessing power and speed of alerters by adding more machines, (ii) main-

tain the whole detection chain up-to-date and consistent with concurrent

(un)subscriptions and a permanent data flow.

In the context of the Xyleme project, our goal was to process HTML and XML

documents found on the Web.

Given the size of the Web, it was necessary to be able to process several mil-

lions of documents per day. Whereas the services that we provide are not new,

this context lead to very strict performance requirements that made it a challen-

ging problem. While we do not need to have strict real-time processing (i.e. with

very low latency), the average speed of the alerters has to match the crawling

speed. The word streaming is often used to describe this problem of processing

a flow of data in this context [96]. Intuitively, it means that the alerters have to

process the flow of data and not slow it down.

One aspect of the architecture is the extensive use of asynchronous commu-

nications in the system. For instance, the alerters receive documents in a asyn-

chronous way: documents are sent by burst transfers and no reply is needed. In a
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similar way, the alerters send their alerts to the next module in the chain (the No-

tification Processor) in an asynchronous way: alerts are sent using burst transfers

and no reply is expected. The synchronous transfers enable a large gain on net-

work bandwidth since raw bandwidth is not a limiting factor, while network calls

latency may be a limiting factor. Also it implies that a module does not slow down

the other modules as long as its average speed for handling documents matches

the average speed of its input.

We present briefly in this chapter the two algorithms that we implemented

and that represent the main aspects of events detection in our system. Namely,

we present an algorithm to detect keywords (and keywords sequences) and an al-

gorithm to detect simple path expressions (in the spirit of XPath). We also present

a brief state-of-the art on the topic of processing XPath queries.

Finally, we mention a real-worlds application of the system: the Copy Tracker

that has been developed by Mihai Preda using the notification system. This is a

critical use-case of our system since it is targeted to the final customers.

6.2 Alerts on keywords

Detecting keywords on pages is a basic feature of any notification system. How-

ever, the problem becomes more complex when considering millions of users (i.e.

millions of keywords), and a few hundred documents per second.

For engineering reasons, and given the experiments for the URL plug-in, we

decided to also use an hash table to implement this plug-in. The look-up of a given

word consists simply in a look-up in the hash table. The document is read, and

each word is processed in the order they appear. Note that for a word that appears

several times in the document, a look-up in the hash table is computed as many

times.

The Sequence Problem An interesting point was the detection of keywords se-

quence. Consider for instance, Air France. A possibility to implement the

detection is as follows. As described in [84], our system detects conjunctions of

events. Thus, it can detect that a page contains the two words Air and France.

It is possible, using some post-processing to detect among those pages that con-

tain the two words which of them contain the word sequence Air France.

However, the performance and complexity study conducted by Benjamin Nguyen
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in [84, 83] seemed to indicate that this was not an optimal choice as it would

increase the number of detected events, which increases dramatically the cost of

finding the corresponding subscriptions.

The Sequence Algorithm We developed a specific algorithm for detecting word

sequences. More precisely, we consider the detection of a sequence of consecutive

words W��W�� w�� ���wn in the document. We implemented it as follows:

� a WordsMemory structure records the nmax latest words of the document.

nmax is typically from � to �

.

� The words sequence as registered in the hash table as one large word, in-

cluding space characters. For instance "Air France".

Then, when the document is read, each possible subsequence (with length up

to nmax) is tested against the hash table. This results in s � nmax look-ups in

the hash table, where s is the number of words in the document, and nmax the

maximum number of words allowed for each sequence.

When nmax grows, it becomes inefficient to test all sequences up to that length.

We introduced an optimization as follows:

1. For each subscription w�� ���� wn, the subsequence w�� ���� wj, where j � n

are marked “interesting”. They are added to the hash table (associated with

a null event).

2. Consider that a word w is read from the document. A look-up for w in the

hash table is processed. This mean that we look-up for an event corres-

ponding to the sequence of length i where i � �, ending at word w. If some

event (even a null event) is found, we increase i and we loop. This is done

until i � nmax or until no event is found for some value j of the length of

the sequence. Then, we continue processing the document by reading next

word w�.

For instance, consider the sequence ...avion Air France... in the

document. We look-up for avion in the hash table. No event is found. We read

the next word. We look-up for Air in the hash table. No event is found. We read

the next word. We look-up for France in the hash table. A null event is found.

We look-up for Air France. The corresponding event is found (and not null).
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We note it. We look-up for avion Air France. No event is found. We read

the next word.

Thus, the worst-case upper bound remains identical in term of s and nmax, but

the average computation time is greatly reduced.

Remark Note that the management of deletions of subscriptions requires to

have a usage counter for each string in the hash table. Interesting, the structure

that is then represented in the hash table is somehow similar to a dictionary (where

node granularity is an entire word), of the reversed sequences that have been sub-

scribed. We will see next that this can be compared to some XPath filtering al-

gorithm which consists in reversing path expressions.

6.3 An application: the Copy-Tracker

In this section, we briefly describe a typical application that uses the Alerters.

This application is named Copy Tracker, and has been developed by Mihai Preda,

from [119].

The context of the application was to detect illegal copies of News wires on

the Internet. The goal of our system was, given a News wire, to retrieve all copies

of that wire found on the Internet. To do so, we use the Xyleme Crawler to read

pages from the Web, and the Alerter to detect events on these pages. The Copy-

Tracker consists in finding for each news wire the specific events that can be used

to detect the copies on the Web. This is done by finding a signature for each news

wire. The signature consists in a set of words that (we believe) are specific to that

particular text. The alerters are used to detect all pages on the Web containing

these words, i.e. matching the signature.

The copy-tracker application process consists in two steps.

The first step consists in finding the signature of the document. The signature

is a set of discriminant words in the News wire. These are typically infrequent

words that are frequently used in that precise document. More precisely, for each

word we compute a score that is the ratio between its frequency of use in the

document versus its frequency on the Web.

r �
fdocument

fWeb
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We select the n words with highest ratio. n is typically 	 to . When n is to low,

many Web pages may be detected that are not the expected News wire. On the

other hand, when n is too high, some versions of the News wire that have been

slightly modified may not be detected. The frequency of words on the Web, fWeb

is itself computed using the Alerters. This was done once during a limited time-

frame experiment. We registered each word from the dictionary (to avoid spelling

mistakes), and for each word, the alerters reported each time a document appears

which contains it.

The second step consists in finding on the Web all documents that match this

signature. To do so, we register a continuous query, to the subscription system,

that reports all documents which contain all selected words. Then, this query is

evaluated on documents that are loaded from the Web. An important issue in that

system, that we do not consider here, is that news pages change frequently on the

Web. Thus, the crawling strategy must be very efficient to rapidly discover new

news pages and crawl them before they change or disappear. This is considered in

Chapters 7 and Chapter 8.

This application shows a typical usage of the Alerters to detect rapidly specific

documents on the Internet. It is a real-world industrial applications, that targets

directly the final customer.

6.4 XML Alerts

In this section, we present an algorithm that we implemented to detect specific

path expressions in XML documents. There is abundant work in that area, and

more precisely on the topic of processing XPath queries.

First, we present briefly what is a path expression as proposed by XPath. Then,

we present the state of the art for processing XPath expressions. Finally, we

present our algorithm.

6.4.1 A brief introduction to XPath

Consider an XML document. A simple path expression is a sequence of des-

cending axes (e.g. child-of or descendant-of) that is used to retrieve nodes in the

document. For instance, consider the expression:

/catalog/product//price
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It starts on the document’s root node, that should be named <catalog>.

If not, the result is empty. Then, it takes all child nodes of <catalog> that

are named <product>, and for each of them, retrieves all the nodes named

<price> in their subtree (i.e. descendant nodes).

In that spirit, XPath [116] is a language for addressing parts of an XML doc-

uments. An XPath expression starts from a node that is named the context node.

It retrieves a list of nodes, each of them matching the path expression. By default,

the context node is the root of the document. If the context is a list of nodes, the

XPath is applied to each context node, and the results are merged. Details omitted.

XPath does significantly more than simple path expression in several ways:

� It allows not only descendant axes (e.g. child-of(noted/), or descendant-

of (noted //), or next-sibling), but also ascending axes, such as

parent, ascendant-of or previous-sibling.

A typical example is:

//price/parent::cd/parent::product

It retrieves all parent nodes of product nodes.

� It allows the evaluation of filtering, such as name="computer", includ-

ing a full algebra on numbers and strings. As we will see later, this algebra

(including string concatenation) and tests are sufficient to make XPath eval-

uation very costly in time and space. A typical example is:

//product/cd[price<9.99]

It retrieves all product nodes which have a price child. Then, the text

node below the price is compared with ��, and only the node giving true

results are kept.

� It allows to “join” several XPath expressions. The join is based on node

identity and represented by []. For instance consider P1[P2]/P3. The

expression P1 retrieves a set of context nodes. The expression P2 is applied

on each of them. Only the nodes for which the result is non-empty are kept.

Then, P3 is applied on the remaining nodes. Following example retrieves,

among all products, the name of those whose price is lower than ��.
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//product/cd[price<9.99]/name

In that case, P1 is //product/cd, P2 is price<"99", and P3 is name.

The formal definition of XPath gives a way to evaluate XPath expressions.

However, we see next that real-world implementations of XPath should use other

algorithms.

6.4.2 Processing XPath queries: state of the art

Algorithms for processing of XPath queries should be considered in two categor-

ies: (i) the regular ones, evaluating the query using knowledge about the entire

document (typically a DOM model), and (ii) streaming XML, i.e. evaluation

query with a single pass on the XML document, and limited memory usage (typ-

ically a pushdown stack).

DOM Model Recent work on that topic is presented in [51]. First, they show

through experiments that the current implementations of XPath in XALAN [112],

XT [33] and Microsoft Internet Explorer 6 have an exponential cost (in the length

of the query), even for very simple documents and queries. [51] proposed a poly-

nomial algorithm for evaluating full XPath, and a linear time algorithm for a subset

of XPath. Intuitively, this subset of XPath contains all XPath axes, but no arith-

metical or string operations. The linear time algorithm runs in O�N � D� where

N is the size of the query and D the size of the data. In [52], the polynomial

algorithm is improved, and a practically relevant fragment of XPath is defined for

which a further form of query evaluation is possible. The main drawback of these

algorithms is that they rely on a DOM model, i.e. the document has to be loaded

in memory 1.

Streaming XML It is also very common to consider some algorithms and ap-

plications in the context of streaming XML. Streaming XML typically relies on the

SAX parser model [93]. It assumes that the document is traversed once. While

some streaming algorithms use no memory at all, most algorithms use a push-

down stack [96]. In [53], a streaming version of an XPath algorithm is proposed.

It has been implemented has part of the XML-TK [115] project. It consider the

descendant paths, and does not consider string (and numerical) algebra. It also

1Another possibility is to use a Persistent DOM implementation and navigate on disk
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does not consider joins. The main idea is that path expressions can be processed

using a Non-Deterministic State Automata (with no stack). Their algorithms con-

structs lazily the corresponding deterministic state automata on the fly, while the

XML document is processed. The construction is lazy in that it only constructs

the parts of the automata that are reached while reading the document. While the

deterministic automata size is exponential in the worst-case (i.e. to handle all pos-

sible documents), the automata size remains linear (bounded by the data guide)

when a single document is processed. Thus, the worst-case cost for processing

a single document is in O�N � D�, where N is the size of the query, and D the

size of the data. Moreover, it is possible to process several queries at a time by

composition of their automata. In that case, the computing cost is no more than

O�D �
P

qNq�.

Ascending Axes As we have seen, several algorithms consider only descending

axes of XPath, for instance child, nextSibling and not parent, previousSibling.

However, [86] proves that this can be done without loss of generality. Indeed,

they proposed two algorithms that transform path expression (without joins) into

descending only path expressions. A first algorithm runs in exponential time (in

the length of the path) and transforms a path expression into a descending path

expression, with no joins. To do so, there is a restriction on the ascending axes

of the first path expression, i.e. they can not use ancestor axes but only parent.

A second algorithm runs in linear time and constructs a path expression, with as

many joins as ascending axes in the source.

Filtering XML In [21], an index structure is proposed that is used to process

XPath expressions in a streaming fashion. Their work relies on decomposing tree

patterns into collections of substrings (i.e. simple path expressions), and indexing

them. A closely related work is XFilter [10].

6.4.3 Our algorithm for processing simple path expressions

Our work is also in the spirit of XFilter [10]. The main difference with XPath

is that we do not return the set of nodes that match the path expression. Given

an XML document, and a set of path queries, we only return a list of those path

expression that have had a non-empty result for that document. Other restrictions

to XPath are:
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(i) we only consider descending axes,

(ii) we do not consider an algebra for processing numbers and strings,

(iii) we do not allow the presence of several branches (denoted by [] in XPath),

that lead to computing joins.

Intuition Our algorithm works by reversing the path expressions. Then, the

document is read in a streaming fashion, and nodes are processed in a postfix

order. For instance, a node is processed when its closing XML tag is read, and

not when its opening tag is read. Thus, the parent and ancestors of a node are

processed after each node. By checking ancestor nodes against the reversed path

expressions, we can detect the corresponding events. A detailed description is

given below:

Description of the algorithm Consider a path expression P , composed of a se-

quence of element names e�� ���� en. The document is read in a streaming fashion,

in postfix order, i.e. child nodes are always processed first. Let l be the level of a

node, i.e. the node’s depth starting from the root of the document. We maintain

an array that stores, for each possible level, a set of element’s position in the path

expression. These positions start from the right of the path expression, i.e. the

path expression is considered in reversed order. They correspond to the parts of

the path expression that have already been detected (the right part), and point to

the part that has to be detected (the left part). For instance, at the beginning, all

lists contain a single pointer to en. If an element of type en is found at some node

n, then, a pointer to en�� is added to list corresponding to the previous level l� �.

Again, note that the algorithm rely on the postfix order of nodes, e.g. the parent

node of n will be read after n was read. This is done until e� is detected, which

implies that the path expression has a non-empty result to that document.

We handle differently the two operators / and //. For a path denoted by

.../a//b, once b has been detected, a should be tested against all ancestor nodes.

First, a pointer to a is stored at the level corresponding to the parent node p of b.

When node p is read, we check if p is an element node of name a. If so, the rest of

the path expression is stored at his parent level, and so on. If not, the same pointer

to a is stored at the parent level. If the path expression was .../a/b, and the test

failed, then the pointer to a is thrown away.
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An important aspect to note is that all elements of path expressions are indexed

in a shared hash table, in order to retrieve at little cost matching path expressions.

From there, it is easy to extend the algorithm to work on several path expres-

sion while reading the document only once. The precise algorithm is given in

Figure 6.1

Complexity Analysis Let D be the number of nodes in the document. For each

node, we have to find all path expressions ending with that node. The cost is

constant since this is a look-up to a hash table. Then, we have to test the node

again all path expression pointers stored at the current stack level, and possibly

move them to the parent level. In the worst case, there is at each level of the stack,

a pointer to each position of each registered path expression. Thus, the worst-case

cost is in O�D � d �
P

qNq�, where D is the size of the document, d the depth of

the document, and Nq the length of each query q.

Experiments The algorithm has been implemented as part of the Xyleme pro-

ject [117], and is now used in a production system in Xyleme [119]. Thus, it has

been tested against millions of XML documents loaded from the Web.

6.5 Conclusion

We have developed an algorithm for processing simple XPath queries that is

tailored to the needs of the Xyleme system and runs in quasi linear time.

Next, we plan to improve our algorithm as follows. The possibility to support

the XPath operator [] (i.e. joins based on nodes identities) may be added at the

subscription level where several atomic events are joined. However, to do so, it

would be necessary to do joins based on node identity, and thus it is necessary to

modify our algorithm so that it return the list of nodes matching the various path

expressions. When this is done, according to Olteanu and al. work [86], we could

support descending axes (i) using a preprocessing phase for path queries.

In the context of Active XML [1], we have also conducted research on the

topic of query evaluation on distributed and replicated data [2]. This work is not

detailed here.

More experiments are also needed.
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% Input:
% Document D,
% (all nodes <n> in postfix order)
% A Set of path Expressions P1, ..., Pq
%
% Output:
% Set of path expressions a1....ak
% where a_i is in (P1...Pq)
%

Stack s ;
ReturnResult r;

for each node <N>
% in postfix order

let l be the level of N

find all path expressions ending with N
add them to s, at level (l-1)

for each element <e> of s at level (l)

if N is equal to e
if <e> is the first element

of path expression P
then add P to r
else add previous element of e

to s at level (l-1)

else
if the operator is "e/"

then forget e
if the operator is "e//"

then move e to s at level (l-1)

endif
end for

end for

Figure 6.1: Streaming Computation of Simple Path Expressions
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Archiving the french Web

119





Introduction

In the first part of this thesis, our focus was change-control at the microscopic

scale, and in particular changes inside XML documents. We presented algorithms

and systems to analyze the elements and components of semi-structured data, as

well as detecting and representing changes.

In this part, our focus will be changes at the macroscopic scale. More pre-

cisely, we are interested in finding and managing data and documents of interest

from the web. The goal is to set-up foundations for systems that manage histor-

ical data, found anywhere on the web, possibly in the context of some specific

application.

We will in particular see the notion of page importance, namely PageRank,

that is an essential aspect towards efficient approaches for data discovery on the

Internet.

In Chapter 7, we propose a new algorithm that computes online the importance

of web pages. In Chapter 8, we present our work in the context of an interesting

application: the archiving of the web by national libraries, and more precisely the

archiving of the French web by the French national library (BnF).
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Chapter 7

On-line Computation of page

importance

Abstract The computation of page importance in a huge dynamic graph has

recently attracted a lot of attention because of the web. Page importance, or page

rank is defined as the fixpoint of a matrix equation. Previous algorithms compute

it off-line and require the use of a lot of extra CPU as well as disk resources (e.g.

to store, maintain and read the link matrix). We introduce a new algorithm OPIC

that works on-line, and uses much less resources. In particular, it does not require

storing the link matrix. It is on-line in that it continuously refines its estimate

of page importance while the web/graph is visited. Thus it can be used to focus

crawling to the most interesting pages. We prove the correctness of OPIC. We

present Adaptive OPIC that also works on-line but adapts dynamically to changes

of the web. A variant of this algorithm is now used by Xyleme.

We report on experiments with synthetic data. In particular, we study the

convergence and adaptiveness of the algorithms for various scheduling strategies

for the pages to visit. We also report on experiments based on crawls of significant

portions of the web.

This work has been published in [7], and an extended abstract has been pub-

lished in [5]. It has been conducted with Serge Abiteboul and Mihai Preda. In

particular, the original idea of such an algorithm is from Mihai, as well as the

implementation and experiments on a large scale web Crawler. Serge helped him

“fix” the algorithm (make it compute the correct PageRank) and proved the cor-

rectness. My contributions are as follows:

� Although not leading, I participated in the early works on the algorithm
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� I participated in the proof of correctness of the algorithm and in tuning it

� I implemented the algorithms and conducted the experiments on synthetic

data

� I conducted the research on dynamic graphs (model and experiments)

� Together with Luc Segoufin, we further formalized the PageRank computa-

tion over the graph of the web, and explained issues related to a-periodicity

and strong connectivity of the graph.

7.1 Introduction

An automated web agent visits the web, retrieving pages to perform some pro-

cessing such as indexing, archiving, site checking, etc., [9, 49, 94]. The robot

uses page links in the retrieved pages to discover new pages. Observe that all

pages on the web do not have the same importance. For example, Le Louvre

homepage is more important that an unknown person’s homepage. Page import-

ance information is very valuable. It is used by search engines to display results in

the order of page importance [49]. It is also useful for guiding the refreshing and

discovery of pages: important pages should be refreshed more often1 and when

crawling for new pages, important pages have to be fetched first [31]. Following

some ideas of [62], Page and Brin proposed a notion of page importance based on

the link structure of the web [16]. This was then used by Google with a remark-

able success. Intuitively, a page is important if there are many important pages

pointing to it. This corresponds, for instance, to the intuition of importance for

research articles: a paper is important if it is referenced by many other (important)

papers. This leads to a fixpoint computation by repeatedly multiplying the matrix

of links between pages with the vector of the current estimate of page importance

until the estimate is stable, i.e., until a fixpoint is reached.

The main issue in this context is the size of the web, billions of pages [15, 92].

Techniques have been developed to compute page importance efficiently, e.g.,

[55]. The web is crawled and the link matrix computed and stored. A version

of the matrix is then frozen and one separate process computes off-line page im-

portance, which may take hours or days for a very large graph. So, the core of

the technology for the off-line algorithms is fast sparse matrix multiplication (in

1Google [49] seems to use such a strategy for refreshing pages; Xyleme [119] does.
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particular by extensive use of parallelism). This is a classical area, e.g., [100].

The algorithm we propose computes the importance of pages on-line, with lim-

ited resources, while crawling the web. It can be used to focus crawling to the

most interesting pages.

The algorithm works as follows. Intuitively speaking, some “cash” is initially

distributed to each page and each page when it is crawled distributes its current

cash equally to all pages it points to. This fact is recorded in the history of the

page. The importance of a page is then obtained from the “credit history” of the

page. The intuition is that the flow of cash through a page is proportional to its

importance. It is essential to note that the importance we compute does not assume

anything about the selection of pages to visit. If a page “waits” for a while before

being visited, it accumulates cash and has more to distribute at the next visit. In

Sections 7.2 and 7.3, we present a formal model and we prove the correctness of

the algorithm.

In practice, the situation is more complex. Consider the ranking of query res-

ults. First, the ranking of result pages by a search engine should be based on

factors other than page importance. One may use criteria such as the occurrences

of words from the query and their positions. These are typically criteria from in-

formation retrieval [101] that have been used extensively since the first generation

of search engines, e.g. [9]. One may also want to bias the ranking of answers

based on the interest of users [88, 20]. Such interesting aspects are ignored here.

On the other hand, we focus on another critical aspect of page importance, the

variations of importance when the web changes.

The web changes all the time. With the off-line algorithm, we need to restart a

computation. Although techniques can be used to take into account previous com-

putations, several costly iterations over the entire graph have to be performed by

the off-line algorithm. We show how to modify the on-line algorithm to adapt to

changes. Intuitively, this is achieved by taking into account only a recent window

of the history.

Several variants of the adaptive on-line algorithm are presented. An imple-

mentation of one of them is actually used by the Xyleme crawlers [118, 119].

It runs on a cluster of PCs. The algorithms are described using web terminology.

However, the technique is applicable in a larger setting to any graph. Furthermore,

we believe that versions of the on-line algorithm running in a distributed environ-
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ment could be useful in network applications when a link matrix is distributed

between various sites.

Now consider the issue of archiving the web. In Section 7.6.3, we mention

studies that we conducted with librarians from the French national Library to de-

cide if page importance (PageRank) can be used to detect web sites that should be

archived. In Chapter 8, we discuss other criteria of importance, such as site-based

importance.

The chapter is organized as follows. We first present the model and in par-

ticular, recall the definition of importance. In Section 7.3, we introduce the al-

gorithm focusing on static graphs. In Section 7.4, we consider different crawling

strategies. In Section 7.5, we move to dynamic graphs, i.e., graphs that are con-

tinuously updated like the web. The following section deals with implementation

and discusses some experiments. The last section is a conclusion.

7.2 Model

In this section, we present the formal model. Reading this section is not mandatory

for the comprehension of the rest of the chapter.

The web as a graph We view the World Wide Web as a directed graph G. The

web pages are the vertices. A link from one page to another form a directed edge.

We say that a directed graph G is connected if, when directed edges are

transformed into non-directed edges, the resulting graph is connected in the usual

sense. A directed graph G is said to be strongly connected if for all pair of

vertices i� j there exists a directed path going from i to j following the directed

edges of G. A graph is said to be aperiodic if there exists a k such that for all pair

of vertices i� j there exists a directed path of length exactly k going from i to j

following the directed edges of G. Thus aperiodicity implies strong connectivity.

When the web graph is not connected, each connected components may be

considered separately.

A graph as a matrix Let G be any directed graph with n vertices. Fix an arbit-

rary ordering between the vertices. G can be represented as a matrix L����n� ���n�

such that:

� L is nonnegative, i.e. �i� �j� L�i� j� � 
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� L�i� j� � 
 if and only if there is an edge from vertex i to vertex j.

There are several natural ways to encode a graph as a matrix, depending on

what property is needed afterwards. For instance, Google [16, 88] defines the out-

degree d�i� of a page as the number of outgoing links, and set L�i� j� � ��d�i� if

there is a link from i to j. In [62], Kleinberg proposes to set K�i� j� � � if there is

a link from i to j, but then sets L � KT �K (where KT is the transpose of matrix

K).

Importance The basic idea is to define the importance of a page in an inductive

way and then compute it using a fixpoint. If the graph contains n nodes, the

importance is represented as a vector �x in a n dimensional space. We consider

three examples, in which the importance is defined inductively by the equation

�xk�� � L�xk:

� If one decides that a page is important if it is pointed by important pages.

Then set L�i� j� � � iff there is an edge between i and j.

� A “random walk” means that we browse the web by following one link at a

time, and all outgoing links of a page have equal probability to be chosen.

If one decides that a page importance is the probability to read it during

a “random walk” on the web, then set L�i� j� � ��d�i� iff there is a edge

between i and j. The random walk probabilities correspond to the Markov

chain with generator L. This definition of L will result in the definition of

importance as in Google PageRank.

� If one decides that a page is important if it is pointed by important pages or

points to important pages. Then set L�i� j� � � iff there is an edge between

i and j or an edge between j and i. This is related to the work of Kleinberg.

In all cases, this leads to solving by induction an equation of the type �x � L�x

where L is a nonnegative matrix. This suggests iterating over xk, �xk�� � L�xk.

Unfortunately, for obvious modulus reasons, this is very likely to diverge or to

converge to zero. Observe that we are only interested in the relative importance of

pages, not their absolute importance. This means that only the direction of �xk is

relevant, not its norm. Thus it is more reasonable to consider the following induc-

tion (equivalent for importance computation), which uses the previous induction
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step but renormalizes after each step:

�xk�� �
L�xk

k L�xk k
�y�

Computing the importance of the pages thus corresponds to finding a fixpoint

�x to �y�, each ith coordinate of x being the importance of page i. By definition,

such a fixpoint is an eigenvector of L with a real positive eigenvalue. If �x� is a

linear combination of all eigenvector having a real positive eigenvalue then it is

easy to see that �y� will converge to the eigenspace corresponding to the dominant

eigenvalue (i.e. which is maximal). Thus, unless x� is not general enough (e.g.

not zero), the importance corresponds to an eigenvector of L which eigenvalue is

a positive real and which modulus is maximal among all other eigenvalues.

For each nonnegative matrix L, there always exists such an eigenvector (see

Perron-Frobenius theorem 7.2.1) but several problems may occur:

� There might be several solutions. This happens when the vector space cor-

responding to the maximal eigenvalue has a dimension greater than 1.

� Even if there is a unique solution, the iteration �y� may not converge when

the graph does not have some desired properties.

All these cases are completely characterized in the Theorem of Perron-

Frobenius that we give next.

Theorem 7.2.1

Perron-Frobenius [48]. Let L be an nonnegative matrix corresponding to a graph

G. There exists an eigenvalue r which is real positive and which is greater than

the modulus of any other eigenvalue. Furthermore,

1. If G is strongly connected then the vector space for r is of dimension 1.

2. If G is aperiodic and �x� general enough (e.g. not zero) then the induction

�y� converges towards the eigenvector for r of modulus 1. Note that the

converse is true in the sense that if the graph is not aperiodic it is always

possible to find an x� such that �y� does not converge.

In order to solve the convergence problem, Google [49] uses the following

patch. Recall that L is defined in this case by L�i� j� � ��d�i� iff there is an

edge from i to j. A new matrix L� is defined such that L��i� j� � L�i� j� � �
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where � is a small real. Then the fixpoint is computed over L� instead of L. Note

that L� corresponds to a new graph G� which is G plus a “small” edge for any

pair i� j. Observe that the new graph G� is strongly connected and aperiodic thus

the convergence of �y� is guaranteed by Theorem 7.2.1. For each �, this gives

an importance vector �x�. It is not hard to prove that when � goes to zero, �x�

converges to an eigenvector of L with a maximal real positive value. Thus, for

� small enough, �x� may be seen as a good approximation of the importance. For

some mysterious reason, Google sets2 � to 
��.

Another way to cope with the problem of convergence is to consider the fol-

lowing convergence suite:

�y�� �yn�� �
Lyn � yn

k Lyn � yn k

If r is the maximal eigenvalue of a nonnegative matrix L then r�� can be shown

to be the maximal eigenvalue of L� I . Thus, a solution �y of �y �� is also a solution

of y. If L is strongly connected then L � I is aperiodic and thus �y�� converges

towards the importance. If L is not strongly connected there might be several

linearly independent eigenvector, but still it is easy to show that �y �� converges

towards the projection of �x� on the eigenspace corresponding to all solutions.

On the web The computation of page importance in a huge dynamic graph has

recently attracted a lot of attention because of the web, e.g., [80, 16, 88, 20, 41].

It is a major issue in practice that the web is not strongly connected. For instance,

in the bow tie [17] vision of the web, the OUT nodes do not branch back to the

core of the web. Although the same computation makes sense, it would yield a

notion of importance without the desired semantics. Intuitively, the random walk

will take us out of the core and would be “trapped” in OUT pages that do not lead

back to the core (the “rank sink” according to [16]). So, pages in the core (e.g., the

White House homepage) would have a null importance. Hence, enforcing strong

connectivity of the graph (by “patches”) is more important from a semantic point

of view than for mathematical reasons. In a similar way to Google, our algorithm

enforces the strong connectivity of the graph by introducing “small” edges. More

precisely, in our graph, each node points to a unique virtual page. Conversely, this

virtual page points to all other nodes.

2Greater values of � increase the convergence speed.
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Our Algorithm Our algorithm computes the characteristic vector of �y��, and

doesn’t require any assumption on the graph. In particular, it works for any link

matrix L, assuming that L can be read line by line. More precisely, for each page i

that is read, we use the values L�i� j� where L�i� j� � 
. For instance, in Google’s

link matrix, these values correspond to outgoing links (the pages j pointed by page

i), which are known at little cost by parsing the HTML file. However, the cost

may be higher in some other cases (e.g., when L�i� j� � 
 represents incoming

links, we need to store and read an index of links). In terms of convergences,

the different cases are characterized in a similar way as previously, e.g. if G is

strongly connected, the solution is unique and independent of the initial vector x�.

Previous work is abundant in the area of Markov chains and matrix fixpoint

computations, e.g. [32] or [80]. In most cases, infinite transition matrix are man-

aged by increasing the size of a known matrix block. Some works also consider a

changing web graph, e.g. an incremental computation of approximations of page

importance is proposed in [30]. As far as we know, our algorithm is new. In

particular:

� it may start even when a (large) part of the matrix is still unknown,

� it helps deciding which (new) part of the matrix should be acquired (or

updated),

� it is integrated in the crawling process,

� it works on-line even while the graph is being updated.

For instance, after crawling 	

 million pages on the web, we have a relatively

precise approximation of page importance for over � billion pages, i.e., even of

parts of the matrix corresponding to pages that we did not read so far.

7.3 Static graphs: OPIC

We consider in this section the case of a static graph (no update). We describe the

algorithm for Google link matrix L as defined previously. It can be generalized to

work for other link matrices. We present the OPIC algorithm and show its correct-

ness. OPIC stands for Online Page Importance Computation. We briefly discuss

the advantages of the technique over the off-line algorithm. We will consider

dynamic graphs in the next section.
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Informal description

For each page (each node in the graph), we keep two values. We call the first

cash. Initially, we distribute some cash to each node, e.g., if there are n nodes,

we distribute ��n to each node. While the algorithm runs, the cash of a node

records the recent information discovered about the page, more precisely, the sum

of the cash obtained by the page since the last time it was crawled. We also record

the (credit) history of the page, the sum of the cash obtained by the page since

the start of the algorithm until the last time it was crawled. The cash is typically

stored in main memory whereas the history may be stored on disk. When a page

i is retrieved by the web agent, we know the pages it points to. In other words,

we have at no cost the outgoing links information for the retrieved page. We

record its cash in the history, i.e., we add it to the history. We also distribute this

cash equally between all pages it points to. We reset the cash of the page i to 0.

This happens each time we read a page. We will see that this provides enough

information to compute the importance of the page as used in standard methods.

We will consider in a further section how this may be adapted to handle dynamic

graphs.

Detailed description

We use two vectors C����n� (the cash) and H����n� (the history). The initialization

of C has no impact on the result. The history of a page is simply a number. A

more detailed history will be needed when we move to an adaptive version of the

algorithm. Let us assume that the historyH is stored on disk and C is kept in main

memory. In order to optimize the computation of jHj �
P

iH�i�, a variable Z is

introduced so that Z � jHj at each step. The algorithm is shown in Figure 7.1.

In this algorithm, we use jHj �
P

iH�i� � Z. At each step, an estimate of

any page k’s importance is �H�k� � C�k����Z � ��.

Note that the algorithm does not impose any requirement on the order we

visit the nodes of the graph as long as each node is visited infinitely often (some

minimal fairness). This is essential since crawling policies are often governed

by considerations such as robots exclusion, politeness (avoid rapid-firing), page

change rate, focused crawling.

As long as the cash of children is stored in main memory, no disk access is

necessary to update it. At the time we visit a node (we crawl it), the list of its
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for each i let C[i] := 1/n ;
for each i let H[i] := 0 ;
let Z:=0 ;

do forever
begin

choose some node i ;
%% each node is selected
%% infinitely often

H[i] += C[i];
%% unique read/write disk ac-

cess per page

for each child j of i,
do C[j] += C[i]/out[i];

%% Distribution of cash
%% depends on L

Z += C[i];
C[i] := 0 ;

end

Figure 7.1: On-line Page Importance Computation

children is available on the document itself and does not require disk access. Two

disk accesses (one read, one write) are needed for updating the history of the page

that is visited. However, note that our crawler needs anyway to read and write

some metadata (e.g. the date of crawl) for each page that is visited. Thus, given

that the history value is stored with the other metadata, updating it does not add

any cost in terms of disk access.

Each page has at least one child, thanks to the “small” edges that we presented

in the previous Section (and that points to the virtual page). However, for practical

reasons, the cash of the virtual page is not distributed all at once. This issue is in

particular related to the discovery of new pages and management of variable sized

graphs that we consider later.

We next prove the correctness of the algorithm.
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Proof of correctness

Consider a graph G of n nodes. We will use the following notation:

Notation 7.3.1

We note Ct and Ht the values of vectors C and H at the end of the t-th step of the

algorithm. The vector C� denotes the value of vector C at initialization (all entries

are ��n). Let Xt be defined by:

Xt �
Ht

jHtj
� i.e., �j�Xt�j� �

Ht�j�

�
P

iHt�i��

Assuming the graph is strongly connected, when t goes to infinity, we will see

that:

� jHtj goes to infinity

�

j�L� �Xt��Xtj �
�

jHtj

� jXtj � �.

This will show the following theorem:

Theorem 7.3.1

The vector Xt converges to the vector of importance, i.e.,

�Imp� limt���Xt � Imp

Recall that the algorithm assumes that all pages are read infinitely often. In

other words, for each time t, for each page k, there exists some time t� � t such

that page k will be read at time t�.

�t� �k� �t�� t� � t� choosenode�t�� � k

To prove this theorem, we use the five following lemmas:

Lemma 7.3.2

The total amount of all cash is constant and equal to the initial value, i.e., for each

t,
Pn

i�� Ct�i� �
Pn

i��C��i� � �
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Proof: This is obvious by induction since we only distribute each node cash

among the children.

Lemma 7.3.3

After each step t, we have for each page j,

Ht�j� � Ct�j� � C��j� �
X

(i ancestor of j�

�
L�i� j�

out�i�
�Ht�i��

Proof: The proof is by induction. Clearly, the lemma is true at time t � 
.

Suppose it is true at time t for each element j. At step t � �, some page k is

crawled. We prove the formula holds at time t�� for each element j. We consider

the two cases: j equals k or not.

j � k If j � k, then the right term doesn’t change: �i� i 	� j�Ht���i� � Ht�i�. The

left term value doesn’t change either, the cash is added to H and then set to

zero. So Ht���j��Ct���j� � Ht�j��Ct�j�, and the equation is true at t��.

j 	� k Then Ct���j� increases by Ct�k� �
L�i�j�
out�i�

. So

Ht���j� � Ct���j� � C��j� �
X

(i ancestor of j�

�
L�i� j�

out�i�
�Ht�i�� � Ct�k� �

L�k� j�

out�k�

Now �i� i 	� k�Ht���i� � Ht�i�, and also Ht���k� � Ht�k� �Ct�k�, and this shows

the result.

Lemma 7.3.4

If all pages are infinitely read,
P

j Ht�j� goes to infinity.

Proof: This lemma is true if there exists e � 
 such that starting at any time t,
P

j Ht�j� will eventually increase of e. Consider e � ��n, i.e. e is the average

value of cash on all pages. Let t be any time. At time t, there is a page j having

more than e cash. By definition of the algorithm, the cash of page j can not

decrease until j is read. Moreover, the page j will be read one more time after

t because all pages are read infinitely often. Thus, the history of the page will

increase of at least e when page j is read, and this will increase
P

j Ht�j�.

Note that for Lemma 7.3.4, it is not necessary that G is a strongly connected

graph: the proof works for any graph. Considering a strongly connected graph, a

stronger result is obtained as follows.
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Lemma 7.3.5

Consider a strongly connected graph G with n nodes.

(a) Let i� j be any pair of nodes. Then, c in the cash of node i eventually leads

to c�nn in the cash of node j.

(b) As a consequence, for each node j, Ht�j� goes to infinity.

Proof: In the algorithm, each node of the graph, when it is read, splits the value

by at most n, because it can’t have more than n different links. We suppose that

the graph is strongly connected, so there is a path from i to j, and it is no longer

than n. Let’s note P����Pk the pages for this path. Thus, each time page Px is

crawled with some cash c, the cash of page Px�� is increased by at least c�n. Now

we suppose that every page is crawled an infinite number of times. Consider some

time t. We eventually we will crawl P� at time t� � t, then eventually P� at time

t� � t�, ... until Pk. Thus we will eventually have distributed at least c�nn in the

cash of j. This shows (a).

Consider any moment t, some node contains at least ��n cash (because
P

iCt�i� � �). Thus, it will eventually increase the cash of j (thus eventually

its history) by ��nn. In other words, there is a positive constant e (for instance

e � ��nn) such that for each page j, for each time t, we will eventually increase

the history of j by e at some time t� � t. Thus Ht�j� goes to infinity. This shows

(b). This is stronger than Lemma 7.3.4 in that we show here that H�j� goes to

infinity for each node j, whereas Lemma 7.3.4, only jHj goes to infinity.

Now it is possible to describe the limit when t goes to infinity.

Lemma 7.3.6

limt��� jL� �Xt �Xtj � 


Proof: By definition of Xt, for each i, Xt�i� � Ht�i��
P

Ht�j�. Then,

By Lemma 7.3.3,

Ht�j� � Ct�j� � C��j� �
X

(i ancestor of j�

�
L�i� j�

out�i�
�Ht�i��

Let us look at the jth coordinate of jL� �Xt �Xtj:

����
�L� �Ht �Ht��j�P

kHt�k�

���� �
����
Ct�j�� C��j�P

kHt�k�

���� �
�P

kHt�k�
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Its limit is 0 because, when t goes to infinity,
P

j Ht�j� goes to infinity (by

Lemma 7.3.4) and C��j�, Ct�j� are bounded by 1.

By Lemma 7.3.6, Xt goes infinitely close to a characteristic vector of L of the

dominant characteristic value r. This suggests using Xt � Ht�Z as an estimate

of page importance.

Theorem 7.3.7

The limit of Xt is Imp, i.e., limt���Xt � Imp

Proof: By the previous result,

lim
t���

j�L� � �� �Xtj � 


where 1 is the identity matrix (1 in the diagonal and 0 elsewhere). Consider now

the decomposition of Xt � St � Dt where St is in Ker�L� � �� (the kernel of

matrix L���), and Dt in the corresponding orthogonal space where the restriction

of L� � � is invertible. Because St is in Ker�L� � ��, we have �t� L� �Xt �Xt �

L� �Dt �Dt and so

lim
t���

j�L� � �� �Dtj � 


We can now restrict to the orthogonal space ofKer�L����, in whichL��� has

an inverse called H . The matrix multiplication being continuous, we can multiply

to the left by H , which is constant, and thus

lim
t���

jDtj � 


Now if we use the fact that there is a single fixpoint solution for L�, that mean

that Ker�L� � �� is of dimension � and that

�t� Xt � �t � Imp�Dt

where �t is a scalar. Now because jDtj converges to zero, and jXtj � jImpj � �,

we have:

lim
t���

Xt � Imp
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Note that we can add � (i.e.
P

i Ct�i�) to the denominator Z by using the

cash accumulated since last crawl, and thus have (on average) a marginally better

estimate. More precisely, one can use for page j,

Ht�j� � Ct�j�

�
P

iHt�i�� � �

We will mention some details of the implementation in Section 7.6. We can

already mention advantages over the off-line algorithm. OPIC uses only local

information, i.e. the outgoing links of the page that is being crawled that can be

found in the page as URLs. Thus our algorithm presents the following advantages:

Advantages over the off-line algorithms The main advantage of our algorithm

is that it allows focused crawling. Because our algorithm is run online and its

results are immediately available to the crawler, we use it to focus crawling to

the most interesting pages for the users. This is in particular interesting in the

context of building a web archive [4], when there are strong requirements (and

constraints) on the crawling process.

Moreover, since we don’t have to store the matrix but only a vector, our al-

gorithm presents the following advantages:

1. It requires less storage resources than standard algorithms.

2. It requires less CPU, memory and disk access than standard algorithms.

3. It is easy to implement.

Our algorithm is also well adapted to “continuous” crawl strategies. The

reason is that storing and maintaining the link matrix during a “continuous”

crawl of the web (when pages are refreshed often) is significantly more expensive

than for single “snapshot” crawl of the web (when each page is read only once).

Indeed, when information about specific pages has to be read and updated fre-

quently, the number of random disk access may become a limiting factor. In our

experiment for instance, the crawler was retrieving hundreds of pages per seconds

on each PC (see Section 7.6). However, note that the storage of a link matrix may

be useful beyond the computation of page importance. For instance, given a page

p, Google provides the list of pages pointing to it. This means that the matrix (or

its transpose) is maintained in some form. Another usage of the link matrix is

exhibited in [42].
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7.4 Crawling Strategies

In this section, we first consider different crawling strategies that impact the speed

of convergence of our algorithm. Then, we study how they can be used in the case

of a changing graph. Implementations aspects and experiments are considered in

the next section.

7.4.1 On convergence

As previously mentioned, the error in our estimate is bounded by �
jHtj

. Let us

call �
Zt

� �
jHtj

� ��
P

kHt�k� the error factor, although this is, strictly speaking,

not the error (but an upper bound for it). Now, in principle, one could choose a

very bad strategy that would very often select pages with very low cash. (The

correctness of the algorithm requires that each page is read infinitely many times

but does not require the page selection strategy to be smart.) On the other hand, if

we choose nodes with very large cash, the error factor decreases faster.

To illustrate, consider three page selection strategies:

1. Random : We choose the next page to crawl randomly with equal probabil-

ity. (Fairness: for each t�, the probability that a page will be read at some

t � t� goes to 1 when t goes to infinity.)

2. Greedy : We read next the page with highest cash. This is a greedy way to

decrease the value of the error factor. (Fairness: For a strongly connected

graph, each page is read infinitely often because it accumulates cash until it

is eventually read. See Lemma 7.3.5 in the appendix).

3. Cycle : We choose some fixed order and use it to cycle around the set of

pages. (Fairness is obvious.) We considered this page selection strategy

simply to have a comparison with a systematic strategy. Recall that system-

atic page selection strategies impose undesired constraints on the crawling

of pages.

Remark 7.4.1

(Xyleme strategy) The strategy for selecting the next page to read used in Xyleme

is close to Greedy. It is tailored to optimize our knowledge of the web [89], the

interest of clients for some portions of the web, and the refreshing of the most

important pages that change often.
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Random vs. Greedy. To get a feeling of how Random and Greedy progress,

let us consider some estimates of the values of the error factor for these two page

selection strategies. Suppose that at initialization, the total value of the cash of all

pages is � and that there are n pages. Then:

� Random : The next page to crawl is chosen randomly so its cash is on

average �
n

. Thus, the denominator of the error factor is increased by �
n

on

average per page.

� Greedy : A page accumulates cash until it reaches the point where it is

read. Let � be the average cash of a page at the time it is read. On av-

erage, the cash of the page is ��� if we suppose that cash is accumulated

linearly by pages until they are read. This result has been confirmed by ex-

periments. Since the total of the cash is �, this shows that � is � � ���n�.

Thus the denominator of the error factor is increased by �
n

on average per

page read. This result has also been confirmed by experiments, the average

“cash” value of pages at the time they are crawled is close to �
n

.

Thus the error factor decreases on average twice faster with Greedy than with

Random. We will see with experiments (in Section 7.6) that, indeed, Greedy con-

verges faster. Moreover, Greedy focuses resources on important pages. For these

pages, it outperforms Random even more.

7.5 A changing graph: The Adaptive OPIC al-

gorithm

Consider now a dynamic graph (the case of the web). Pages come and disappear

and edges too. Because of the time it takes to crawl the web (weeks or months),

our knowledge of the graph is not perfect. Page importance is now a moving target

and we only hope to stay close to it.

It is convenient to think of the variable Z � jHj as the clock. Consider two

time instants t�T� t corresponding to Z having the value t�T and t. Let Ht�T�t�i�

be the total of cash added to the history of page i between time t � T and t, i.e.,

Ht�i��Ht�T �i�. Let

�j�Xt�T �j� �
Ht�T�t�j�

�
P

iHt�T�t�i��
�
Ht�T�t�j�

T
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Because the statement of Theorem 7.3.3 does not impose any condition on the

initial state of Xt, it is obvious that Xt�T converges to the vector of importance

when T goes to infinity. (Note that on the other hand, for a fixed T , when t goes

to infinity, Xt�T does not converge to the vector of importance.) Using the data

gathered between t�T and t, comes to ignoring the history before time t�T and

starting with the state of the cash at time t � T for initial state. Observe that this

state may be not more informative than the very first state with equal distribution

of cash.

We thus estimate the importance of a page by looking at the history between

t (now) and t � T . We call the interval �t � T� t� the (time) window. There is a

trade-off between precision and adaptability to changes and a critical parameter

of the technique is the choice of the size of the window.

The Adaptive OPIC algorithm We next describe (variants of) an algorithm,

namely Adaptive OPIC, that compute(s) page importance based on a time window.

In Adaptive OPIC, we have to keep some information about the history in a

particular time window. We considered the following window policies:

� Fixed Window (of size T ): For every page i, we store the value of cash Ct�i�

and the global value Zt for all times it was crawled since (now - T ).

� Variable Window (of size k): For every page i, we store the value of cash

Ct�i� and the global value Zt for the last k times this page was crawled.

� Interpolation (of time T ): For every page i, we store only the Zt value when

it was last crawled, and an interpolated history H�i� (to be defined) that

estimates the cash it got in a time interval of size T before that last crawl.

In the following, we call measure a pair (C�Z). Note that in Variable Win-

dow, we store exactly k measures; and that in Interpolation, we store only one.

Note also that in Fixed Window, the number of measures varies from one page to

another, so this strategy is more complex to implement.

In our analysis of Adaptive OPIC, there will be two main dimensions: (i) the

page selection strategy that is used (e.g., Greedy or Random ) and (ii) the window

policy that is considered (e.g., Fixed Window or Interpolation).

Fixed Window One must be aware that some pages will be read rarely (e.g.,

once in several months), whereas others will be read perhaps daily. So there are
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(a)

New History
(interpolation)

New
History
Old

Measure

 

Old
History

(b)

New Measure

(interpolation)

New History

T T

Figure 7.2: Simple Interpolation

huge variations in the size of histories. For very large histories, it is interesting

to use compression techniques, e.g., to group several consecutive measures into

one. On the opposite, we have too few measures for very unimportant pages. This

has a negative impact on the speed of convergence of the algorithm. By setting a

minimum number of measures per page (say 3), experiments show that we obtain

better results. See Section 7.6.

Interpolation It is tailored to use little resources. Indeed, for each page, the

history simply consists of two values. This is what we tested on real web data

(See Section 7.6). It is the policy actually used in Xyleme [118, 89, 119]. It

is based on a fixed time window of size T . The algorithm uses for history two

vectors H����n�� Z����n�:

� H�i� represents the sum of the cash acquired by the page i during a time

period T before the last crawl. This value is obtained by interpolation.

� Z�i� is the Z-time of that last crawl.

When we visit a page and update its history, we estimate the cash that was

added to that page in the interval T until that visit. See Figure 7.2 for an intuition
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of the interpolation. We know what was added to its cash between time Z�i� and

Z, C�i�. The interpolation assumes that the page accumulates cash linearly. This

has been confirmed by experiments. More precisely, the history is updated as

follows:
H�i� � T�	Z�Z�i��

T
� C�i� if Z � Z�i� � T

C�i� � T
Z�Z�i�

otherwise

Expanding the graph When the number of nodes increases, the relative diffi-

culty to assign a cash and a history to new nodes highlights some almost philo-

sophical issues about the importance of pages. Consider the definition of im-

portance based on �y�. When we crawl new pages, these pages acquire some

importance. The importance of previously known pages mechanically decreases

in average simply because we crawled more pages. This is true for instance in

the random walk model: adding new pages of non-null probability to be read can

only decrease the probability of other pages to be read. However, these changes

in pages importance seem unfair and are not expected by users of the system.

We assign to each new page a default history that corresponds to the importance

of recently introduced pages. Experiments confirmed this to be a good estimate.

The reason is that important pages are discovered first, whereas new or recently

introduced pages are often the least important ones.

Focused crawling and page discovery In our system, the scheduling of pages

to be read depends mostly on the amount of “cash” for each page. The crawling

speed gives the total number of pages that we can read for both discovery and

refresh. Our page importance architecture allows us to allocate resources between

discovery and refresh. For instance, when we want to do more discovery, we

proceed as follows: (i) we take some cash from the virtual page and distribute it

to pages that were not read yet (ii) we increase the importance of “small” edges

pointing to the virtual page so that it accumulates more cash. To refresh more

pages, we do the opposite. We can also use a similar method to focus the crawl

on a subset of interesting pages on the web. For instance, we used this strategy

to focus crawling to XML pages [118, 89]. In some other applications, we may

prefer to quickly detect new pages. For instance, we provide to a press agency a

“copy tracker” that helps detecting copies of their News wires over the web. The

problem with News pages is that they often last only a few days. In this partic-

ular application, we process as follows for each link: pages that are suspected to
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contain news wires (e.g. because the URL contains “news”) receive some “extra”

cash. This cash is taken from the (unique) virtual page so that the total value of

cash in the system does not change.

7.6 Implementation and experiment

We implemented and tested first the standard off-line algorithm for computing

page importance, then variants of Adaptive OPIC. We briefly describe some as-

pects of the implementation. We then report on experiments first on synthetic

data, then on a large collection of web pages.

7.6.1 A distributed implementation

We implemented a distributed version of Adaptive OPIC that can be parameterized

to choose a page selection strategy, a window policy, a window size, etc.

Adaptive OPIC runs on a cluster of Linux PCs. The code is in C++. Corba is

used for communications between the PCs. Each crawler is in charge of a portion

of the pages of the web. The choice of the next page to read by a crawler is

performed by a separate module (the Page Scheduler). The split of pages between

the various crawlers is made using a hash function hurl of the URLs. Each crawler

evaluates the importance of pages it is in charge of. Its portion of the cash vector

is in main memory, whereas its portion of the history is on disk. The crawler also

uses an (in memory) hash table that allows to map a URL handled by this crawler

to its identifier (an integer) in the system. Finally, it uses a map from identifiers to

URLs. This last map may reside on disk. Each crawler crawls millions of pages

per day. The bandwidth was clearly the limiting factor in the experiments. For

each page that is crawled, the crawler receives the identifier of a page from the

page scheduler and then does the following:

Fetch: It obtains the URL of the page, fetches the page from the web and parses

it;

Money transfers: It distributes the current cash of the page to the pages it points

to. For each such page, it uses hurl to obtain the name of the server in charge

of that page. It sends a “money transfer” to that server indicating the URL

of the page and the amount. This is a buffered network call.
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Records: It updates metadata (e.g. date of crawl, hash signature) about the

visited page. This requires a pair of disk access (a read and a write). The

history of the page, stored with the other metadata, is also updated. The

cash is reset to null.

Each crawler also processes the money transfer orders coming from other servers.

Communications are asynchronous.

It should be observed that for each page crawled, there are only two disk ac-

cesses, one to obtain the metadata of the page and one to update the metadata,

including the history. Besides that, there are Corba communications (on the local

network), and main memory accesses.

7.6.2 Synthetic data

Although we started our experiments with a large collection of URLs on the web,

synthetic data gave us more flexibility to study various input and output paramet-

ers, such as: graph size, graph connectivity, change rates, types of changes, distri-

bution of in-degrees, out-degrees and page importance, importance error, ranking

errors. So, we report on them first.

The graph model We performed experiments with various synthetic graphs

containing dozens of millions of web pages. These experiments showed that the

use of very large graphs did not substantially alter the results.

For instance, we started with graphs obtained using a Poisson distribution on

the average of incoming links, a somewhat simplistic assumption. We then per-

formed experiments with more complex distributions following recent studies of

the web graph [17], e.g., with a power distribution P �I � n� � ��n���. Results

were rather similar to those obtained using a Poisson distribution. In order to also

control the distribution of outgoing links and the correlations between them, we

tried several graph models in the spirit of [37], but even with significant changes

of the graph parameters, the patterns of the results did not change substantially

from the simple graph model. So, we then restricted our attention to rather simple

graphs of reasonably small size to be able to test extensively, e.g., various page

selection strategies, various window sizes, various patterns of changes of the web.

In the remaining of this section, we will consider a simple graph model based

on the power distribution on incoming edges. Details omitted. The number of

nodes is fixed to N = 100 000 nodes.
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Figure 7.3: Convergence of OPIC (on all pages)

Impact of the page selection strategy First, we studied the convergence of

OPIC for various page selection strategies. We considered Random, Cycle and

Greedy. We compared the values of the estimates at different points in the crawl,

after crawling N pages, up to to �
 �N pages.

The error we compute is the mean over the set of pages of the error between

the computation of OPIC at this state and the value of the fixpoint. More precisely,

we compute the average of the percentage of error:

�

 �

P
j

jX�j��Imp�j�j
Imp�j�

N

where Imp is obtained by running the off-line algorithm until a fixpoint is reached

(with negligible error).

Consider Figure 7.3. The error is about the same for Greedy and Cycle. This

result was expected since previous studies [59] show that given a standard cost

model, uniform refresh strategies perform as good as focused refresh. As we

also expected, Random performs significantly worse. We also compared these,

somewhat artificially, to the off-line algorithm. In the off-line, each iteration of

the matrix is a computation on N pages, so we count N “crawled pages” for each

iteration. The off-line algorithm converges almost like Cycle and Greedy. This
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Figure 7.4: Convergence of OPIC (on important pages)

is not surprising since the crawl of N pages with Cycle corresponds roughly to a

biased iteration on the matrix.

Now consider Figure 7.4. The error is measured now only for the top ten

percent pages, the interesting ones in practice. For this set of pages, Greedy (that

is tailored to important pages) converges faster than the others including the off-

line algorithm.

We also studied the variance. It is roughly the same for all page selection

strategies, e.g., almost no page had a relative error more than twice the mean

error. We also considered alternative error measures. For instance, we considered

an error weighted with page importance or the error on the relative importance that

has been briefly mentioned. We also considered the error in ordering pages when

their importance is used to rank query results. All these various error measures

lead to no significant difference in the results.

Impact of the size of the window As already mentioned, a small window means

more reactivity to changes but at the cost of some lack of precision. A series of

experiments was conducted to determine how much. To analyze the impact of

the size of the window, we use Adaptive OPIC with the Greedy strategy and a

Fixed Window of M crawls, i.e., we keep for each page the history since the last
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Figure 7.5: Influence of window’s sizes

M crawls of the page. Similar results were obtained with other variants of the

algorithm. Consider Figure 7.5 ignoring the Interpolation policy for the moment.

The change rate is the number of pages that have their in-degree significantly

modified (i.e. divided par two or multiplied by two) during the time of crawlingN

pages, where N is the number of pages on the graph (i.e. the time for “one” crawl

of the graph). For each change rate the graph is crawled ten times. The figure

shows the result for M = 4, 8, 16. The important point to notice is that we can

get reasonably close to the fixpoint with rather small windows (e.g., M � � here).

As previously mentioned, the trade-off is reactivity to changes versus precision.

When the time window becomes too small (e.g., M � 	 here), the error is more

important. This is because each measure for a page gives only a too rough estimate

of this page importance, so the error is too large. Such an error may still be

acceptable for some applications.

Now observe the Interpolation experiment in Figure 7.5. First, note that it

performs almost as well as large Variable Window (e.g. M � ��) on graph with

few changes. Also, it adapts better to higher change rates (e.g. more than 1

percent). So, let us consider now the comparison of various window policies.
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Figure 7.6: Storage resources per time window

Impact of the window policy We compared different policies for keeping the

history. In this report, we use again the Greedy strategy. Various window policies

may require different resources. To be fair, we chose policies that roughly reques-

ted similar amount of resources. Typically, we count for storage the number of

measures we store. (Recall that a measure consists of a value for C and one for

Z.) The five policies we compared used between 4 and 8 measures, except Inter-

polation that by definition uses only 1. Figure 7.6 shows the average number of

measures used per page in each case. These measures depend for Fixed Window

on the crawling speed which was set here to be N pages per month (the speed

was chosen here so that Fixed Window would use about as much resources as

the others). We also considered a variant of Fixed Window that forces each page

to have a minimum number of measures, namely Improved Fixed Window. We

required for the experiment mentioned here a minimum of 3 measures. Note that

this resulted for this particular data set in an increase of the average number of

measures from 	 to ���.

Now consider Figure 7.7. It shows that for a similar number of measures,

Variable Window performs better than Fixed Window. The problem with Fixed

Window is that very few measures are stored for unimportant pages and the con-

vergence is very slow because of errors on such pages. On the other hand, the

Improved Fixed Window policy yields significantly better results. The improve-

ment comes indeed from more reliability for unimportant pages.

The most noticeable result about the use of windows is that the algorithm

with the Interpolation policy outperforms the other variants while consuming less

resources. Indeed, the error introduced by the interpolation is negligible. Fur-

thermore, the interpolation seems to avoid some “noise” introduced when an old

measure is added (or removed) in Adaptive OPIC. In some sense, the interpolation

acts as a filter on the sequence of measures.
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Of course the convergence of all variants of the adaptive algorithms depends

on the time window that is used. The excellent behavior of Interpolation con-

vinced us to adopt it for our experiments with crawls of the web. This is con-

sidered next.

7.6.3 Web data

We performed the web experiments using the crawlers of Xyleme [119]. The

crawl used the page selection strategy of Xyleme that has been previously men-

tioned and is related to Greedy. The history was managed using the Interpolation

policy.

During the test, the number of PCs varied from 2 to 8. Each PC had little disk

space and less than 1.5Gb of main memory. Some reasonable estimate of page

importance for the most important pages was obtained in a few days, as important

pages are read more frequently and discovered sooner than others. The experi-

ments lasted for several months. We discovered one billion URLs; only 400 mil-

lions of them were actually read. Note that because of the way we discover pages,

these are 400 million relatively important pages. Moreover, we could give reas-

onable importance estimates even on pages that were never read. This experiment
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was sufficient (with limited human checking of the results) to conclude that the

algorithm could be used in a production environment. Typically, for all practical

uses of importance we considered (such as ranking query results or scheduling

page refresh), the precision brought by the algorithm is rapidly sufficient. An ad-

vantage of the algorithm is also that it rapidly detects the new important pages, so

they can be read sooner.

A main issue was the selection of the size of the time window. We first fixed it

too small which resulted in undesired variations in the importance of some pages.

We then used a too large window and the reactivity to changes was too limited.

Finally, the window was set to 3 months. This value depends on the crawling

speed, which in our case was limited by the network bandwidth.

Our performance analysis also showed that using our system (Xyleme crawler

and Adaptive OPIC), it is possible to, for instance, crawl and compute page im-

portance (as well as maintain this knowledge) for a graph of up to 2 billions pages

with only 4 PCs equipped each with 4Gb of main memory and a small disk.

In the context of web archiving [4], we also conducted experiments to decide

if our measures of page importance could be used to select pages of interest for

the French national Library [73]. We selected thousand web sites, and � different

professional librarians ranked each site in order to decide which sites should be

archived (on a 1 to 4 scale). We defined the reference value for each site based

on the average of these rankings. Finally, we defined the “score” of a librarian as

the number of sites in which his rank was identical to the reference. The scores

of librarians ranged from 60 to 80 percent, and the score of our page importance

measures was 65 percent. This means that our measure based only on page im-

portance was as good as a professional librarian, although not as good as the best

ones. We are currently working on using other criteria [4] to improve the “auto-

matic” librarian.

Other Improvements During our experiments, we found out that the semantics

of links in dynamic pages is (often) not as good as in pages fully written by hu-

mans. Links written by humans usually points to more relevant pages. On the

other hand, most links in dynamic pages often consist in other (similar) queries

to the same database. For instance, forum archives or catalog pages often contain

many links that are used to browse through classification. Similarly, we found out

that “internal” links (links that point to a page on the same web site) are often

less useful to discover other relevant pages than “external” links (links to a page
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on some other web site). Motivated by that, we proposed in [4] a notion of site-

based importance that we describe in next Chapter. The main idea is to consider

links between web-sites instead of links between web-pages. We are currently

experimenting our algorithm with this new notion of importance per site.

7.7 Conclusion

We proposed a simple algorithm to implement with limited resources a realistic

computation of page importance over a graph as large as the web. We demon-

strated both the correctness and usability of the technique. Our algorithm can be

used to improve the efficiency of crawling systems since it allows to focus on-line

the resources to important pages. It can also be biased to take into account specific

fields of interest for the users [4].

More experiments on real data are clearly needed. It would be in particular

interesting to test the variants of Adaptive OPIC with web data. However, such

tests are quite expensive.

To understand more deeply the algorithms, more experiments are being con-

ducted with synthetic data. We are experimenting with various variants of Ad-

aptive OPIC. We believe that better importance estimates can be obtained and are

working on that. One issue is the tuning of the algorithms and in particular, the

choice of (adaptable) time windows. We are also continuing our experiments on

changing graphs and in particular on the estimate of the derivative of the import-

ance. We finally want to analyze more in-depth the impact of various specific

graph patterns as done in [75] for the off-line algorithm.

We are also working on a precise mathematical analysis of the convergence

speed of the various algorithms. The hope is that this analysis will provide us with

bounds of the error of the importance, and will also guide us in fixing the size of

windows and evaluating the changes in importance. We are also improving the

management of newly discovered pages.

The algorithm presented here computes page importance that depends on the

entire graph by looking at one page at a time independently of the order of visiting

the pages. It would be interesting to find other properties of graph nodes that can

be computed similarly.
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Chapter 8

A First Experience in Archiving the

French Web

Abstract.

The web is a more and more valuable source of information and organizations

are involved in archiving (portions of) it for various purposes, e.g., the Internet

Archive www.archive.org. A new mission of the French National Library (BnF)

is the “dépôt légal” (legal deposit) of the French web. We describe here some

preliminary work on the topic conducted by BnF and INRIA. In particular, we

consider the acquisition of the web archive. Issues are the definition of the peri-

meter of the French web and the choice of pages to read once or more times (to

take changes into account). When several copies of the same page are kept, this

leads to versioning issues that we briefly consider. Finally, we mention some first

experiments.

Xyleme [119] supplied us with the crawling system and data sets that we used

to conduct experiments. We would like to thank Mihai Preda, Gérald Sédrati,

Patrick Ferran and David Le-Niniven for their contribution.

This work is in the context of important projects. The French national library

and other libraries (e.g. Library of Congress) are considering building a consor-

tium to share experience and efforts towards archiving the web. The well known

foundation Internet Archive [58] also expressed interest in the present work.
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8.1 Introduction

Since 15371, for every book edited in France, an original copy is sent to the Biblio-

thèque nationale de France (French National Library - BnF in short) in a process

called dépôt légal. The BnF stores all these items and makes them available for

future generations of researchers. As publication on the web increases, the BnF

proposes providing a similar service for the French web, a more and more import-

ant and valuable source of information. In this chapter, we study technical issues

raised by the legal deposit of the French web.

The main differences between the existing legal deposit and that of the web

are the following:

1. the number of content providers: On the web, anyone can publish docu-

ments. One should compare, for instance, the 148.000 web sites in “.fr” (as

of 2001) with the 5000 traditional publishers at the same date.

2. the quantity of information: Primarily because of the simplicity of publish-

ing on the web, the size of content published on the French web is orders

of magnitude larger than that of the existing legal deposit and with the pop-

ularity of the web, this will be more and more the case.

3. the quality: Lots of information on the web is not meaningful.

4. the relationship with the editors: With legal deposit, it is accepted (indeed

enforced by law) that the editors “push” their publication to the legal de-

posit. This “push” model is not necessary on the web, where national lib-

raries can themselves find relevant information to archive. Moreover, with

the relative freedom of publication, a strictly push model is not applicable.

5. updates: Editors send their new versions to the legal deposit (again in push

mode), so it is their responsibility to decide when a new version occurs. On

the web, changes typically occur continuously and it is not expected that

web-masters will, in general, warn the legal deposit of new releases.

6. perimeter: The perimeter of the classical legal deposit is reasonably simple,

roughly the contents published in France. Such notion of border is more

delusive on the web.
1This was a decision of King François the 1st.
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For these reasons, the legal deposit of the French web should not only rely

on editors “pushing” information to BnF. It should also involve (because of the

volume of information) on complementing the work of librarians with automatic

processing.

There are other aspects in the archiving of the web that will not be considered

here. For instance, the archiving of sound and video leads to issues such as stream-

ing. Also, the physical and logical storage of large amounts of data brings issues

of long term preservation. How can we guarantee that several terabyte of data

stored today on some storage device in some format will still be readable in 2050?

Another interesting aspect is to determine which services (such as indexing and

querying) should be offered to users interested in analyzing archived web con-

tent. In the present chapter, we will focus on the issue of obtaining the necessary

information to properly archive the web.

We describe here preliminary works and experiments conducted by BnF and

INRIA. The focus is on the construction of the web archive. This leads us to

considering issues such as the definition of the perimeter of the French web and

the choice of pages to read one or more times (to take changes into account).

When several copies of the same page are kept, this also leads to versioning issues

that we briefly consider. Finally, we mention some first experiments performed

with data provided by Xyleme’s crawls of the web (of close to a billion URL).

In Section 8.2, we detail the problem and mention existing work on similar

topics. In Section 8.3, we consider the building of the web archive. Section 8.4

deals with the importance of pages and sites that turn out to play an important

role in our approach. In Section 8.5, we discuss change representation, that is we

define a notion of delta per web site that we use for efficient and consistent refresh

of the warehouse. Finally we briefly present results of experiments.

8.2 Web Archiving

The web keeps growing at an incredible rate. We often have the feeling that it

accumulates new information without any garbage collection and one may ask

if the web is not self-archiving? Indeed, some sites provide access to selective

archives. On the other hand, valuable information disappears very quickly as

community and personal web pages are removed. Also the fact that there is no

control of changes in “pseudo” archives is rather critical, because this leaves room
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for revision of history. This is why several projects aim at archiving the web. We

present some of them in this section.

8.2.1 Goal and scope

The web archive intends providing future generations with a representative archive

of the cultural production (in a wide sense) of a particular period of Internet his-

tory. It may be used not only to refer to well known pieces of work (for instance

scientific articles) but also to provide material for cultural, political, sociological

studies, and even to provide material for studying the web itself (technical or

graphical evolution of sites for instance). The mission of national libraries is to

archive a wide range of material because nobody knows what will be of interest

for future research. This also applies to the web. But for the web, exhaustiveness,

which is required for traditional publications (books, newspapers, magazines, au-

dio CD, video, CDROM), can’t be achieved. In fact, in traditional publication,

publishers are actually filtering contents and an exhaustive storage is made by na-

tional libraries from this filtered material. On the web, publishing is almost free of

charge, more people are able to publish and no filtering is made by the publishing

apparatus. So the issue of selection comes again but it has to be considered in the

light of the mission of national libraries, which is to provide future generations

with a large and representative part of the cultural production of an era.

8.2.2 Similar projects

Up to now, two main approaches have been followed by national libraries regard-

ing web archiving. The first one is to select manually a few hundred sites and

choose a frequency of archiving. This approach has been taken by Australia [85]

and Canada [70] for instance since 1996. A selection policy has been defined

focusing on institutional and national publication.

The second approach is an automatic one. It has been chosen by Nordic coun-

tries [12] (Sweden, Finland, Norway). The use of robot crawler makes it possible

to archive a much wider range of sites, a significant part of the surface web in fact

(maybe 1/3 of the surface web for a country). No selection is made. Each page

that is reachable from the portion of the web we know of will be harvested and

archived by the robot. The crawling and indexing times are quite long and in the

meantime, pages are not updated. For instance, a global snapshot of the complete
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national web (including national and generic domain located sites) is made twice

a year by the royal library of Sweden. The two main problems with this model

are: (i) the lack of updates of archived pages between two snapshots, (ii) the deep

or invisible web [90, 14] that can’t be harvested on line.

8.2.3 Orientation of this experiment

Considering the large amount of content available on the web, the BnF deems

that using automatic content gathering method is necessary. But robots have to be

adapted to provide a continuous archiving facility. That is why we have submitted

a framework [71] that allows to focus either the crawl or the archiving, or both,

on a specific subset of sites chosen in an automatic way. The robot is driven by

parameters that are calculated on the fly, automatically and at a large scale. This

allows us to allocate in an optimal manner the resources to crawling and archiving.

The goal is twofold: (i) to cover a very large portion of the French web (perhaps

“all”, although all is an unreachable notion because of dynamic pages) and (ii) to

have frequent versions of the sites, at least for a large number of sites, the most

“important” ones.

It is quite difficult to capture the notion of importance of a site. An analogy

taken from traditional publishing could be the number of in-going links to a site,

which makes it a publicly-recognized resource by the rest of the web community.

Links can be consider similar, to a certain extent of course, to bibliographical

references. At least they give a web visibility to documents or sites, by increasing

the probability of accessing to them (cf the random surfer in [5]). This is bringing

us back to the topic of Chapter 7. We believe that it is a good analogy of the public

character of traditionally published material (as opposed to unpublished, private

material for instance) and a good candidate to help driving the crawling and/or

archiving process [71].

The techniques of Chapter 7 have to be adapted to the context of web archiv-

ing, that is quite different. For instance, as we shall see, we have to move from

a page-based notion of importance to a site-based one to build a coherent web

archive (See Section 8.4). This also leads to exploring ways of storing and ac-

cessing temporal changes on sites (see Section 8.5) as we will no longer have the

discrete, snapshot-type of archive but a more continuous one. To explore these dif-

ficult technical issues, a collaboration between BnF and INRIA started last year.

The first results of this collaboration are presented here. Xyleme provided dif-
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ferent sets of data needed to validate some hypothesis, using the Xyleme crawler

developed jointly with INRIA. Other related issues, like the deposit and archiving

of sites that can not be harvested online [72] will not be addressed here.

One difference between BnF’s legal deposit and other archive projects is that it

focuses on the French web. To conclude this section, we consider how this simple

fact changes significantly the technology to be used.

8.2.4 The frontier for the French web

Given its mission and since others are doing it for other portions of the web, the

BnF wants to focus on the French web. The notion of perimeter is relatively clear

for the existing legal deposit (e.g, for books, the BnF requests a copy of each

book edited by a French editor). On the web, national borders are blurred and

many difficulties arise when trying to give a formal definition of the perimeter.

The following criteria may be used:

� The French language. Although this may be determined from the contents

of pages, it is not sufficient because of the other French speaking countries

or regions e.g. Quebec. Also, many French sites now use English, e.g. there

are more pages in English than in French in inria.fr.

� The domain name. Resource locators include a domain name that some-

times provides information about the country (e.g. .fr). However, this in-

formation is not sufficient and cannot in general be trusted. For instance

www.multimania.com is hosting a large number of French associations and

French personal sites and is mostly used by French people. Moreover, the

registration process for .fr domain names is more difficult and expensive

than for others, so many French sites choose other suffixes, e.g. .com or

.org.

� The address of the site. This can be determined using information obtain-

able from the web (e.g., from domain name servers) such as the physical

location of the web server or that of the owner of the web site name. How-

ever, some French sites may prefer to be hosted on servers in foreign coun-

tries (e.g., for economical reasons) and conversely. Furthermore, some web

site owners may prefer to provide an address in exotic countries such as Ba-

hamas to save on local taxes on site names. (With the same provider, e.g.,
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Gandi, the cost of a domain name varies depending on the country of the

owner.)

Note that for these criteria, negative information may be as useful as positive ones,

e.g., we may want to exclude the domain name .ca (for Canada).

The Royal library of Sweden, which has been archiving the Swedish web for

more than 6 years now, has settled on an inclusion policy based on national domain

(.se and .nu), checking the physical address of generic domain name owners, and

the possibility to manually add other sites. The distribution of the domain names

they use is about 65 percent for nation domains (.se and .nu) and 25 percent for

generic domains (.net, .com, .org).

Yet another difficulty in determining the perimeter is that the legal deposit

is typically not very interested in commercial sites. But it is not easy to define

the notion of commercial site. For instance, amazon.fr (note the “.fr”) is commer-

cial whereas groups.yahoo.com/group/vertsdesevres/ (note the “.com”) is a French

public, political forum that may typically interest the legal deposit. As in the case

of the language, the nature of web sites (e.g., commercial vs. non commercial)

may be better captured using the contents of pages.

No single criteria previously mentioned is sufficient to distinguish the docu-

ments that are relevant for the legal deposit from those that are not. This leads to

using a multi-criteria based clustering. The clustering is designed to incorporate

some crucial information: the connectivity of the web. French sites are expected

to be tightly connected. Note that here again, this is not a strict law. For instance,

a French site on DNA may strongly reference foreign sites such as Mitomap (a

popular database on the human mitochondrial genome).

Last but not least, the process should involve the BnF librarians and their

knowledge of the web. They may know, for instance, that 00h00.com is a web

book editor that should absolutely be archived in the legal deposit.

Technical corner. The following technique is used. A crawl of the web is star-

ted. Note that sites specified as relevant by the BnF librarians are crawled first and

the relevance of their pages is fixed as maximal. The pages that are discovered are

analyzed for the various criteria to compute their relevance for the legal deposit.

Only the pages believed to be relevant (“suspect” pages) are crawled. For the

experiments, the OPIC algorithm (See Chapter 7) is used that allows to compute

page relevance on-line while crawling the web. The algorithm focuses the crawl
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to portions of the web that are evaluated as relevant for the legal deposit. This is

in spirit of the XML-focused on-line crawling presented in [79], except that we

use the multi-criteria previously described. The technique has the other advantage

that it is not necessary to store the graph structure of the web and so it can be run

with very limited resources.

To conclude this section, we note that for the first experiments that we men-

tion in the following sections, the perimeter was simply specified by the country

domain name (.fr). We intend to refine it in the near future.

8.3 Building the Archive

In this section, we present a framework for building the archive. Previous work in

this area is abundant [85, 12, 70], so we focus on the specificities of our proposal.

A simple strategy would be to take a snapshot of the French web regularly,

say n times a year (based on available resources). This would typically mean

running regularly a crawling process for a while (a few weeks). We believe that

the resulting archive would certainly be considered inadequate by researchers.

Consider a researcher interested in the French political campaigns in the beginning

of the 21st century. The existing legal deposit would give him access to all issues

of the Le Monde newspaper, a daily newspaper. On the other hand, the web archive

would provide him only with a few snapshots of Le Monde web site per year. The

researcher needs a more “real time” vision of the web. However, because of the

size of the web, it would not be reasonable/feasible to archive each site once a day

even if we use sophisticated versioning techniques (see Section 8.5).

So, we want some sites to be very accurately archived (almost in real-time);

we want to archive a very extensive portion of the French web; and we would like

to do this under limited resources. This leads to distinguishing between sites: the

most important ones (to be defined) are archived frequently whereas others are

archived only once in a long while (yearly or possibly never). A similar prob-

lematic is encountered when indexing the web [49]. To take full advantage of

the bandwidth of the crawlers and of the storage resources, we propose a general

framework for building the web archive that is based on a measure of import-

ance for pages and of their change rate. This is achieved by adapting techniques

presented in [79].
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8.3.1 Site vs. page archiving

Web crawlers typically work at the granularity of pages. They select one URL

to load in the collection of URLs they know of and did not load yet. The most

primitive crawlers select the “first” URL, whereas the sophisticated ones select

the most “important” URL [49, 79]. For an archive, it is preferable to reason at

the granularity of web sites rather than just web pages. Why? If we reason at the

page level, some pages in a site (more important than others) will be read more

frequently. This results in very poor views of web sites. The pages of a particular

site would typically be crawled at different times (possibly weeks apart), leading

to dangling pointers and inconsistencies. For instance, a page that is loaded may

contain a reference to a page that does not exist anymore at the time we attempt

to read it or to a page whose content has been updated2.

For these reasons, it is preferable to crawl sites and not individual pages. But

it is not straightforward to define a web site. The notion of web site loosely cor-

responds to that of an editor for the classical legal deposit. The notion of site may

be defined, as a first approximation, as the physical site name, e.g., www.bnf.fr.

But it is not always appropriate to do so. For instance, www.multimania.com is the

address of a web provider that hosts a large quantity of sites that we may want to

archive separately. Conversely, a web site may be spread between several domain

names: INRIA’s web site is on www.inria.fr, www-rocq.inria.fr, osage.inria.fr,

www.inrialpes.fr, etc. There is no simple definition. For instance, people will

not all agree when asked whether www.leparisien.fr/news and www.leparisien.fr/

shopping are different sites or parts of the same site. To be complete, we should

mention the issue of detecting mirror sites, that is very important in practice.

It should also be observed that site-based crawling contradicts compulsory

crawling requirements such as the prevention of rapid firing. Crawlers typically

balance load over many web sites to maximize bandwidth use and avoid over-

flooding web servers. In contrast, we focus resources on a smaller amount of web

sites and try to remain at the limit of rapid firing for these sites until we have a

copy of each. An advantage of this focus is that very often a small percentage of

pages causes most of the problem. With site-focused crawling, it is much easier to

2To see an example, one of the authors (an educational experience) used, in the web site of a
course he was teaching, the URL of an HTML to XML wrapping software. A few months later,
this URL was leading to a pornographic web site. (Domain names that are not renewed by owners
are often bought for advertisement purposes.) This is yet another motivation for archives.
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detect server problems such as some dynamic page server is slow or some remote

host is down.

8.3.2 Acquisition: Crawl, Discovery and Refresh

Crawl. The crawling and acquisition are based on a technique [79] that was

developed at INRIA in the Xyleme project. The web data we used for our first ex-

periments was obtained by Xyleme [119] using that technology. It allows, using a

cluster of standard PCs, to retrieve a large amount of pages with limited resources,

e.g. a few million pages per day per PC on average. In the spirit of [55, 59, 79],

pages are read based on their importance and refreshed based on their importance

and change frequency rate. This results in an optimization problem that is solved

with a dynamic algorithm that was presented in [79]. The algorithm has to be

adapted to the context of the web legal deposit and site-based crawling.

Discovery. We first need to allocate resources between the discovery of new

pages and the refreshing of already known ones. For that, we proceed as follows.

The size of the French web is estimated roughly. In a first experiment using only

“.fr” as criteria and a crawl of close to one billion of URLs, this was estimated to

be about 1-2 % of the global web, so of the order of 20 millions URLs. Then the

librarians decide the portion of the French web they intend to store, possibly all

of it (with all precautions for the term “all”). It is necessary to be able to manage

in parallel the discovery of new pages and the refresh of already read pages. After

a stabilization period, the system is aware of the number of pages to read for the

first time (known URLs that were never loaded) and of those to refresh.

It is clearly of interest to the librarians to have a precise measure of the size

of the French web. At a given time, we have read a number of pages and some

of them are considered to be part of the French web. We know of a much greater

number of URLs, of which some of them are considered “suspects” for being

part of the French web (because of the “.fr” suffix or because they are closely

connected to pages known to be in the French web, or for other reasons.) This

allows us to obtain a reasonably precise estimate of the size of the French web.

Refresh. Now, let us consider the selection of the next pages to refresh. The

technique used in [79] is based on a cost function for each page, the penalty for

the page to be stale. For each page p, cost�p� is proportional to the importance
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of page i�p� and depends on its estimated change frequency ch�p�. We define in

the next subsection the importance i�S� of a site S and we also need to define

the “change rate” of a site. When a page p in site S has changed, the site has

changed. The change rate is, for instance, the number of times a page changes per

year. Thus, the upper bound for the change rate of S is ch�S� �
P

p in S�ch�p��.

For efficiency reasons, it is better to consider the average change rate of pages, in

particular depending on the importance of pages. We propose to use a weighted

average change rate of a site as:

�ch�S� �

P
p ch�p� � i�p�P

p i�p�

Our refreshing of web site is based on a cost function. More precisely, we

choose to read next the site S with the maximum ratio:

��S� �
	�i�S�� �ch�S�� lastCrawl�S�� currentT ime�

number of pages in S

where 	 may be, for instance, the following simple cost function:

	 � i�S� � �currentT ime� lastCrawl�S�� � �ch�S�

We divide by the number of pages to take into account the cost to read the

site. A difficulty for the first loading of a site is that we do not know for new sites

their number of pages. This has to be estimated based on the number of URLs we

know of the site (and never read). Note that this technique forces us to compute

importance at page level.

In next Section, we revisit the notion of importance, and we propose using a

notion of importance at web site level.

8.4 New notions of importance for web archiving

In this section, we extend the notion of page importance in two directions. The

first one is to consider not only the graph of the web, but the content of each page.

The second one is to consider the notion of importance at web site level rather

than at page level.
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8.4.1 Importance of pages for the legal deposit

When discovering and refreshing web pages, we want to focus on those which

are of interest for the legal deposit. The classical notion of importance is used.

But it is biased to take into account the perimeter of the French web. Finally,

the content of pages is also considered. A librarian typically would look at some

documents and know whether they are interesting. We would like to perform

such an evaluation automatically, to some extent. More precisely, we can use for

instance the following simple criteria:

� Frequent use of infrequent Words: The frequency of words found in the

web page is compared to the average frequency of such words in the French

web3. For instance, for a word w and a page p, it is:

Iw �
P

each word

fp�w
fweb

where fp�w � np�w�Np

and np�w is the number of occurrences of a word w in a page and Np the

number of words in the page. Intuitively, it aims at finding pages dedicated

to a specific topic, e.g. butterflies, so pages that have some content.

� Text Weight: This measure represents the proportion of text content over

other content like HTML tags, product or family names, numbers or exper-

imental data. For instance, one may use the number of bytes of French text

divided by the total number of bytes of the document.

Ipt �
sizefrench words

sizedoc

Intuitively, it increases the importance of pages with text written by people

versus data, image or other content.

A first difficulty is to evaluate the relevance of these criteria. Experiments

are being performed with librarians to understand which criteria best match their

expertise in evaluating sites. Another difficulty is to combine the criteria. For

instance, www.microsoft.fr may have a high PageRank, may use frequently some

infrequent words and may contain a fair proportion of text. Still, due to its com-

mercial status, it is of little interest for the legal deposit. Note that librarians are

3To guarantee that the most infrequent words are not just spelling mistake, the set of words is
reduced to words from a French dictionary. Also, as standard, stemming is used to identify words
such as toy and toys.
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vital in order to “correct” errors by positive action (e.g., forcing a frequent crawl of

00h00.com) or negative one (e.g., blocking the crawl of www.microsoft.fr). Fur-

thermore, librarians are also vital to correct the somewhat brutal nature of the

construction of the archive. Note however that because of the size of the web, we

should avoid as much as possible manual work and would like archiving to be as

fully automatic as possible.

As was shown in this section, the quality of the web archive will depend on

complex issues such as being able to distinguish the borders of a web site, ana-

lyze and evaluate its content. There are ongoing projects like THESU [54] which

aim at analyzing thematic subsets of the web using classification, clustering tech-

niques and the semantics of links between web pages. Further work on the topic

is necessary to improve site discovery and classification

To conclude this section, we need to extend previously defined notions to the

context of web site. For some, it suffices to consider the site as a huge web doc-

ument and aggregate the values of the pages. For instance, for Frequent use of

infrequent Words, one can use:

Iw �
P

each word
fsite
fweb

where fS�w �
P

p in S�np�w��
P

p in S�Np�

Indeed, the values on word frequency and text weight seem to be more meaningful

at the site level than at the page level.

For page importance, it is difficult. This is the topic of next section.

8.4.2 Site-based Importance

Observe that the notion of page importance is becoming less reliable as the num-

ber of dynamic pages increases on the web. A reason is that the semantics of the

web graph created by dynamic pages is weaker than the previous document based

approach. Indeed, dynamic pages are often the result of database queries and link

to other queries on the same database. The number of incoming/outgoing links

is now related to the size of the database and the number of queries, whereas it

was previously a human artifact carrying stronger semantics. In this section, we

present a novel definition of sites’ importance that is closely related to the already

known page importance. The goal is to define a site importance with stronger

semantics, in that it does not depend on the site internal databases and links. We

will see how we can derive such importance from this site model.
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To obtain a notion of site importance from the notion of page importance, one

could consider a number of alternatives:

� Consider only links between web sites and ignore internal links;

� Define site importance as the sum of PageRank values for each page of the

web site;

� Define site importance as the maximum value of PageRank, often corres-

ponding to that of the site main page.

Page importance, namely PageRank in Google terminology, is defined as the

fixpoint of the matrix equation X � L �X [16, 88], where the web-pages graph

G is represented as a link matrix L����n� ���n�. Let out����n� be the vector of out-

degrees. If there is an edge for i to j, L�i� j� � ��out�i�, otherwise it is 
. We

note Ipage����n� the importance for each page. Let us define a web-sites graph G�

where each node is a web-site (e.g. www.inria.fr). The number of web-sites is n�.

For each link from page p in web-site Y to page q in web-site Z there is an edge

from Y to Z. This edges are weighted, that is if page p in site S is twice more

important than page p� (in S also), then the total weight of outgoing edges from

p will be twice the total weight of outgoing edges from p�. The obvious reason is

that browsing the web remains page based, thus links coming from more important

pages deserve to have more weight than links coming from less important ones.

The intuition underlying these measures is that a web observer will visit randomly

each page proportionally to its importance. Thus, the link matrix is now defined

by:

L��Y� Z� �
X

p in Y� q in Z

Ipage�p�P
p� in Y Ipage�p

��
� L�p� q�

We note two things:

� If the graph G representing the web-graph is (artificially or not) strongly

connected, then the graph G� derived from G is also strongly connected.

� L� is still a stochastic matrix, in that �Y�
P

Z L
��Y� Z� � �. (proof in ap-

pendix).

Thus, the page importance, namely PageRank, can be computed over G�� L�

and there is a unique fixpoint solution. We prove in Appendix B that the solution
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is given by:

Isite�Y � �
X

p in Y

Ipage�p�

This formal relation between web site based importance and page importance

suggests to compute page importance for all pages, a rather costly task. However,

it serves as a reference to define site-based importance, and helps understand its

relation to page-based importance. One could simplify the problem by consider-

ing, for instance, that all pages in a web site have the same importance. Based

on this, the computation of site-importance becomes much simpler. In this case,

if there is there is at least one page in Y pointing to one page in Z, we have

L��Y� Z� � ��out�Y �, where out�Y � is the out-degree of Y . A more precise ap-

proximation of the reference value consists in evaluating the importance of pages

of a given web site S on the restriction of G to S. Intuitively it means that only in-

ternal links in S will be considered. This approximation is very effective because:

(i) it finds very good importance values for pages, that correspond precisely to the

internal structure of the web-site (ii) it is cheaper to compute the internal page

importance for all web sites, one by one, than to compute the PageRank over

the entire web (iii) the semantics of the result are stronger because it is based on

site-to-site links.

This web-site approach enhances significantly previous work in the area, and

we will see in next section how we also extend previous work in change detection,

representation and querying to web sites.

8.5 Representing Changes

Intuitively, change control and version management are used to save storage and

bandwidth resources by updating in a large data warehouse only the small parts

that have changed [69]. We want to maximize the use of bandwidth, for instance,

by avoiding the loading of sites that did not change (much) since the last time

they were read. To maximize the use of storage, we typically use compression

techniques and a clever representation of changes. We propose in this section

a change representation at the level of web sites in the spirit of [63, 69] (See

Chapter 4). Our change representation consists of a site-delta, in XML, with the

following features:
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(i) Persistent identification of web pages using their URL, and unique identi-

fication of each document using the tuple (URL, date-of-crawl);

(ii) Information about mirror sites and their up-to-date status;

(iii) Support for temporal queries and browsing the archive

The following example is a portion of the site-delta for www.inria.fr:

<website url="www.inria.fr">

<page url="/index.html">

<document date="2002-Jan-01" status="updated"

file="543B6.html"/>

<document date="2002-Mar-01" status="unchanged"

file="543B6.html"/>

</page>

<page url="/news.html">

<document date="2002-Mar-25" status="updated"

file="543GX6.html"/>

<document date="2002-Mar-24" status="error">

<error httperror="404"/>

</document>

<document date="2002-Mar-23" status="updated"

file="523GY6.html"/>

...

<document date="1999-Jan-08" status="new"

file="123GB8.html"/>

</page>

<mirror url="www-mirror.inria.fr" depth="nolimit">

<exclusion path="/cgi-bin" />

</mirror>

</website>

Each web-site element contains a set of pages, and each page element con-

tains a subtree for each time the page was accessed. If the page was successfully

retrieved, a reference to the archive of the document is stored, as well as some

metadata. If an error was encountered, the page status is updated accordingly. If

the page mirrors another page on the same (or on another) web-site, the document

is stored only once (if possible) and is tagged as a mirror document. Each web-site
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tree also contains a list of web-sites mirroring part of its content. The up-to-date

status of mirror sites is stored in their respective XML file.

Other usages. The site-delta is not only used for storage. It also improves the

efficiency of the legal deposit. In particular, we mentioned previously that the

legal deposit works at a site level. Because our site-delta representation is de-

signed to maintain information at page level, it serves as an intermediate layer

between site-level components and page-based modules.

For instance, we explained that the acquisition module crawls sites instead

of pages. The site-delta is then used to provide information about pages (last

update, change frequency, file size) that will be used to reduce the number of

pages to crawl by using caching strategies. Consider a news web site, e.g.

www.leparisien.fr/. News articles are added each day and seldom modified

afterwards, only the index page is updated frequently. Thus, it is not desirable to

crawl the entire web site every day. The site-delta keeps track of the metadata for

each pages and allows to decide which pages should be crawled. So it allows the

legal deposit to virtually crawl the entire web site each day.

Browsing the archive. A standard first step consists in replacing links to the

Internet (e.g. http://www.yahoo.fr/) by local links (e.g. to files). The process is in

general easy, some difficulties are caused by pages using java-scripts (sometimes

on purpose) that make links unreadable. A usual problem is the consistency of

the links and the data. First, the web graph is not consistent to start; broken links,

servers down, pages with out of date data are common. Furthermore, since pages

are crawled very irregularly, we never have a true snapshot of the web.

The specific problem of the legal deposit is related to temporal browsing. Con-

sider, for instance, a news web site that is entirely crawled every day. A user may

arrive at a page, perhaps via a search engine on the archive. One would expect

to provide him the means to browse through the web site of that day and also in

time, move to this same page the next day. The problem becomes seriously more

complex when we consider that all pages are not read at the same time. For in-

stance, suppose a user reads a version t of page p and clicks on a link to p�. We

may not have the value of page p� at that time. Should we find the latest version

of p� before t, the first version after t, or the closest one? Based on an evaluation

of the change frequency of p�, one may compute which is the most likely to be
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the correct one. However, the user may be unsatisfied by this and it may be more

appropriate to propose several versions of that page.

One may also want to integrate information coming from different versions of

a page into a single one. For instance, consider the index of a news web site with

headlines for each news article over the last few days. We would like to automat-

ically group all headlines of the week into a single index page, as in Google news

search engine [50]. A difficulty is to understand the structure of the document

and to select the valuable links. For instance, we probably don’t want to group all

advertisements of the week!

8.6 Conclusion

As mentioned in the introduction, this chapter describes preliminary work. Some

experiments have already been conducted. A crawl of the web was performed and

data has been analyzed by BnF librarians. In particular, the goal was to evaluate

the relevance of page importance (i.e., PageRank in Google terminology). This

notion has been validated, to a certain extent, by the success of search engines that

use it. It was not clear whether it is adapted to web archiving. First results seem

to indicate that the correlation between automatic ranking and that of librarians

is essentially as similar as the correlation between ranking by librarians. These

results have been briefly presented in Chapter 7.

Perhaps the most interesting aspect of this archiving work is that it leads us

to reconsider notions such as web site or web importance. We believe that this is

leading to a better understanding of the web. We intend to pursue this line of study

and try to see how to take advantage of techniques in classification or clustering.

Conversely, we intend to use some of the technology developed here to guide the

classification and clustering of web pages.
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Conclusion

In this thesis, we presented our work on the topic of change-control (i) for semi-

structured data, (ii) in the context of the web. There are two significantly different

approaches, we have seen that the first corresponds to a microscopic-scale analysis

of documents from the web, whereas the second corresponds to a macroscopic-

scale analysis of the web. However, we discovered through their study that the

two approaches are strongly tied together:

� Quantity of data. The Internet contains huge amounts of data, but the data

often consists in collections of small documents. Thus, the quantitative

approach consists in a local analysis of data, but it relies of the fact that each

piece of data is part of a larger set of data. This is necessary to improve the

performance of handling multiple pieces of data, and to scale up to the web

data size. Thus, efficiency, performance, memory and storage management

remain a key aspect of all systems.

� Quality of data. The semantic analysis of data also leads to connecting the

microscopic and macroscopic scales. Indeed, the semantic analysis consists

in finding a semantic value and interpretation for each small piece of data,

but in the context of the global data warehouse (or knowledge center) that

is the web. This notion of context can be seen for instance through the use

of DTDs (or XMLSchema): each XML fragments is analyzed separately

but in the context of a global schema. The importance of the global schema

may also be seen as relying on a human or social semantic: for instance

the importance of web pages depends on the way authors consider each

web page they know of. Thus, the microscopic analysis of documents (e.g.

page links) enables the constructions of a macroscopic knowledge such as

page importance. Conversely, the global knowledge improves the semantic

analysis and semantical interpretation of pieces of local data.
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The main part of our work consisted in proposing algorithms, their imple-

mentations and experiments to validate them. More precisely, the algorithms we

proposed are as follows:

� an algorithm to compute the differences between XML files,

� a formal model and some algorithms to manage change operations between

XML documents,

� an algorithm to compute online the page importance on the web, a proof

of the convergence of this algorithm, and an extension to support dynamic

graphs (i.e. the changing web) of this algorithm,

� a framework and algorithms that can be used in the context of the web

archiving, and in particular of choosing web sites to archive.

Moreover, we contributed to broadening existing knowledge with, for in-

stance, a comparative study of change detection algorithms in XML, and XML

change representation formats.

This work has been published in international conferences as well as in French

community conferences. A list is presented in Appendix A. [69, 84, 35, 4, 5]. All

algorithms presented here have been implemented, in the context of important

projects such as [34, 117]. Most of our work has been transfered to industry, in

particular to Xyleme [119], or is available as open-source freeware [34].

Through our work, we noted the lack of a precise model and framework for

change-control on the web, both at the scale of documents and at the scale of the

Internet. Indeed, there are at this time no mechanisms that enable an application

to manage changes that occur on the web. While it is possible for a user to sub-

scribe to the notification system of some web sites, there is no global framework

that permits the management of changes all over the web. There is not enough

information for automatic surveillance, neither in documents (e.g. reliable HTTP

headers informations, or HTML/XML metadata), nor at the scale of the web (e.g.

servers that have informations on the versions of collections of documents).

In a similar way, we noted the lack of a standard for change-control in XML

documents. Some interesting formats have been proposed, but more work is ne-

cessary to obtain a precise framework and change model for managing temporal

and historical data.
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For part of it, these issues (e.g. storage and querying of changes) will probably

be solved in the future. This will lead to the development of better services for the

users of the web.

However, I am afraid that the lack of precise tools for change management may

be due to the notion of changes itself. Isn’t there an almost philosophical issue to

ask whether changes can be managed, while the meaning of changes is to make

things different that what we already have? In the context of the SPIN project for

instance, we somehow faced that problem. The SPIN project consists in managing

a set of web documents of interest for the users. The documents are changing, so

is our warehouse, and web services are also enriching the knowledge contained in

our warehouse. We tried to develop change-control mechanism, but we realized

how difficult it was to develop a generic application for interpreting changes. This

difficult problem somehow relates to “belief revision”, the introduction of changes

in logical theories [82, 95].

As a consequence, change-applications should manipulate change items in a

framework that is precise and does not change itself. It is then possible to process

and understand the changes of the items.

It is a challenge to develop and promote a framework that enables the efficient

management of changing data on the web, in the spirit (and with the success) of

XML and Web Services that are used today to exchange and store data.
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Appendix A

List of Publications

Journals

� Computing web page importance without storing the graph of the web (extended abstract),

Serge Abiteboul, Mihai Preda, Gregory Cobena, IEEE Data Engineering

Bulletin, Volume 25, March 2002

� A dynamic warehouse for XML data of the Web, Lucie Xyleme (I am one

of the 25 authors), IEEE Data Engineering Bulletin, June 2001.

Program Committees

� Organizer and PC-Member of 3rd ECDL Workshop on Web Archives,

Trondheim, Norway, 2003 (to come).

International Conferences

� Adaptive Online Page Importance Computation, Serge Abiteboul and Mi-

hai Preda and Gregory Cobena, WWW 2003 (Budapest, Hungary)

� Dynamic XML Documents with Distribution and Replication, Serge Abite-

boul and Angela Bonifati and Gregory Cobena and Ioana Manolescu and

Tova Milo, SIGMOD 2003 (San Diego, USA)

� A First Experience in Archiving the French Web, Serge Abiteboul, Gregory

Cobena, Julien Masanes, Gerald Sedrati, ECDL 2002 (Rome, Italy)
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� Detecting Changes in XML Documents, Gregory Cobena, Serge Abiteboul,

Amélie Marian, ICDE 2002 (San Jose, USA)

� Change-Centric Management of Versions in an XML Warehouse, Amélie

Marian, Serge Abiteboul, Gregory Cobena, Laurent Mignet, VLDB 2001

(Rome, Italy).

� Monitoring XML data on the Web, Benjamin Nguyen, Serge Abiteboul,

Gregory Cobena, Mihai Preda, SIGMOD 2001 (Santa Barbara, USA).

Workshops and French Conferences

� A comparative study for XML change detection, Grégory Cobena, Talel

Abdessalem, Yassine Hinnach, BDA 2002 (Evry, France). Currently

submitted to TKDE Journal.

� Construction and Maintenance of a Set of Pages of Interest (SPIN), Serge

Abiteboul, Grégory Cobena, Benjamin Nguyen, Antonella Poggi, BDA

2002 (Evry, France)

� Detecting Changes in XML Documents, Gregory Cobena, Serge Abiteboul,

Amélie Marian, BDA 2001 (Agadir, Maroc) (also in ICDE 2002)

� Querying Subscription in an XML Web-house, Benjamin Nguyen, Serge

Abiteboul, Grégory Cobena, Laurent Mignet, on First DELOS Workshop

on Digital Libraries 2000.

Unpublished

� Crawling important sites on the Web, Gregory Cobena, Serge Abiteboul,

2nd ECDL Workshop on Web Archiving (Rome, Italy)

� A comparative study for XML change detection, Grégory Cobena, Talel

Abdessalem, Yassine Hinnach, Currently submitted to TKDE Journal.
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Appendix B

Site-Based Importance - Proof

In this appendix, we give the details of our model of site-based importance.

Lemma B.0.1

Let L����n� ���n� be the link matrix of web pages and I����n� the vector of im-

portance for pages. If there is an edge for i to j, L�i� j� � ��out�i�, otherwise

L�i� j� � 
. The graph G corresponding to L is strongly connected and a-periodic.

L is stochastic. Then L� defined as

L��Y� Z� �
X

p in Y� q in Z

Ipage�p�P
p� in Y Ipage�p

��
� L�p� q�

is also stochastic. We also note that if G is strongly connected, then the graph G �

corresponding to L� is also strongly connected.

Proof: X

Z

L��Y� Z� �
X

Z

X

p in Y

Ipage�p�P
p� in Y Ipage�p

��
�
X

q in Z

L�p� q�

X

Z

L��Y� Z� �
X

p in Y

Ipage�p�P
p� in Y Ipage�p

��
� �
X

Z

X

q in Z

L�p� q��

X

Z

L��Y� Z� �
X

p in Y

Ipage�p�P
p� in Y Ipage�p

��
� �

X

Z

L��Y� Z� � �
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Theorem B.0.1

Let Isite�Y � �
P

p in Y Ipage�p�. Then Isite is the (unique) value of page importance

corresponding to the graph G� and link matrix L�.

Proof: The proof is derived from the formalism presented in our on-line page

importance work [5] (see Chapter 7). In this formalism, when a page is read,

we distribute its “cash” its children. The average speed at which a page receives

“cash” from other pages corresponds exactly to its importance. It is measure by

H�i�, the accumulation of cash. In a summary, we have that H�i� �
P

j H�j� �

L�i� j�, so that the normalization of H converges to page importance I .

Now let us apply the exact same algorithm, i.e. at page level, but let us focus

on the “cash” moving from a web site to another. Let the history at site level be

the sum of the history of its pages. So:

Hsite�Y � �
X

p in Y

H�p�

.

Now consider the “cash” distributed by site Y to a site Z. It is the sum of the

“cash” distributed by the pages of Y to pages of Z. That is:

X

p in Y

X

q in Z

H�p� � L�p� q�

. Which can also be written as
P

p in Y H�p�
P

q in Z
H�p�
H�Y �

� L�p� q�, or H�Y � �

L��Y� Z�. Thus,

H�Z� �
X

Y

H�Y � � L��Y� Z�

, by the definition of L�.

As a consequence, the importance Isite defined previously is a solution of the

on-line formalism applied to graph G�. Our formalism [5] is proved to be strictly

equivalent to PageRank. Moreover, the matrix convergence solution is unique

because G� is strongly connected. Thus, Isite is exactly the PageRank over G�.
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