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Chapter 1

Introduction

The new era of XML Web services is the most exciting ever
for this industry and for customers worldwide.

Bill Gates

Le Web est une grande poubelle a ciel ouvert. Il faut savoir
détecter I’importance de ce que I’on retient.

Serge Abiteboul

For me the fundamental Web is the Web of people. It’s not
the Web of machines talking to each other; it’s not the
network of machines talking to each other. It’s not the Web
of documents. Remember when machines talk to each other
over some protocol, two machines are talking on behalf of
two people.

Tim Berners-Lee



Context In the recent years, two events related to the Wold Wide Web have
changed dramatically the way people can use it. One is the explosion of content,
i.e. theincrease of published documents and data on the web. From administrative
formsto scientific or medical data, as well as home, travel and entertainment, the
web has become the largest repository of content that isfreely available since the
beginning of mankind. The second event is the creation and acceptance of XML-
related technologies. The use of XML and semi-structured data will enable the
development of high quality services on the web.

Users are interested in gathering knowledge and data from the web. One may
remark for instance that users often search for news. Newspaper sites (e.g. LeM-
onde, CNN or TF1) have had aremarkabl e success. Consider for instance aperson
who isinterested in Art, or History. Even if there is already a very large amount
of available knowledge on the topic, this person often wishes to subscribe to news
magazines, mailing lists or newsletters to be regularly informed. We believe that
users are often interested as much (if not more) in changes of data, e.g. new data,
than on the data itself.

In thisthesis, we present work on the topic of change-control. In particular our
work considers change-control on the web, and change-control on semi-structured
data. In other words, we consider dataand their changes from amicroscopic scale
to amacroscopic scale. More precisely we consider data and changes at the scale
of document elements (e.g. XML fragments), and at the scale of the Internet, the
World Wide Web.

This trandates into 4 aspects that we address in this thesis. The four aspects
are asfollows:

(i) Find dataand sources of data. This is related for instance to our work
on archiving the French web. The two main issues are the definition of
the “frontier” of the French web, and the selection of valuable content to
archive. Aswe will seefurther in thisthesis, the issue of selection to obtain
areasonable level of “quality” of information is a key towards the success
of any automatic processing of web data.

(if) Monitor these documents and data through time. Thisisrelated to previous
work on acquisition and refreshment of web data [79, 59]. Our work con-
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CHAPTER 1. INTRODUCTION

(iii)

(iv)

sists in understanding when documents changes, and what are the changes
that occur. To improve the quality of our results, we choose to use as much
as possible the structure of data: the structure of XML documents, and
the structure of web sites where documents are found. In the context of
documents from the web, a critical requirement is performance since it is
necessary to scale to the size of the web.

Extract knowledge on the changing contents of documents, or on their
changing metadata. This denotes the need to add semantic value to data
and to the changes of data. This problem is illustrated in the first part of
this thesis where our study on change detection analyzes various notions of
“quality” of results. These are for instance minimality of the delta results,
the support for move operations that enable a better identification of nodes
through time than insert and delete, and the support of constraints from the
DTDsin the spirit of database keys.

Extract knowledge on the changing relations between documents, or on the
changing collections of documents. Thisisatypical field of information re-
trieval, and previous work is abundant on the topic of analyzing collections
of documents [54, 62]. We propose a possible approach to this problem in
the second part of the thesis by presenting an algorithm that computes the
“importance” of pages on the web, and that adapts to the changes of the
web.

Macroscopic changes. Let usfirst consider the macroscopic changes. The web
Is a large source of documents, and we believe that the change of its content is
very valuable for several reasons. First, because new documents are added that
continuously enrich the available knowledge. Second, because updates of pieces
of information are made precisely to correct and improvethe previousdata. Third,
because these changes that are made are information them-selves. For instance,
each time a stock value changes, thisisinformation.

Moreover, there are other reasons why it is important to learn about changes
on the web.
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One for instance is performance. The web contains today more than 4 billion
pages, and, for instance, to monitor the web we must focus processing resourcesin
the most efficient manner. Thisimplies for instance that no redundant processing
should be performed, and in particular we should focus on processing changing
data and not al the data.

Another reason to learn about changes is that web pages tend to change and
disappear very quickly. It is very important to have the possibility to find some
information as it was at some previoustime.

In a few words, we should say that the focus on changes on the web is neces-
sary to improve (i) the performance of applications, (ii) the quality of information.
Version management on the web is also necessary because it ensures that history
can not be rewritten.

Microscopic changes. Let us now consider the microscopic changes, i.e.
changes at the document level. The main aspect of change-control in documents
is studying differences between severa versions of a document. For instance,
addresses that are modified in some address book.

Our work is focused on XML documents. Extensible Mark-up Language
(XML) isasimple, very flexible text format derived from SGML (1S08879). In
the spirit of SGML and HTML, tags (e.g. <name>Greg</name>) are used to
give atree structure to the document. Today, XML [102] is a de facto standard
for exchanging data both in academia and in industry. We also believe that XML
is becoming a standard to model stored data.

With XML, documents are represented using a precise schema. However, as
opposed to usual (e.g. relational) databases, the schemadoes not need to be strictly
defined as a prerequisite to handle the data. The advantage of XML compared to
flat text filesisthat it adds information that gives a structure to data. For instance,
when ajournalist writes an article to summarize a soccer game, the labeling struc-
ture of XML states for each sentence, and for each word, whether it is the name
of a player, or the name of the referee, or the town where the game took place.
Then, it is possible to write programs that retrieve this information and process
user queries, for instance finding each soccer player that scored agoal in Stade de
France.

12



CHAPTER 1. INTRODUCTION

XML and semi-structured data form an essential component to enable a more
efficient distribution of knowledge and services on the web. The success of XML,
which seems certain at this point, marks the beginning of anew erafor knowledge
and services on the Internet.

We present our work to detect, store and monitor changes on XML documents.
To do so, we present an algorithm to detect changesin XML documents, and we
present a model for representing them in XML. We also present a comparative
study on thistopic.

An important aspect is to consider the quality of results and the semantics of
data. Consider for instance a document representing the list of employees and
their phone numbers in some company. The differences between two versions of
the document may be interpreted in different ways. For instance, the department
of human resources might track the changing phone numbers for each employee.
On the other hand, the maintenance department is interested in the list of phones,
and their technical application considersthat for some phone, it isthe name of the
employeethat changes. Thetwo interpretations|ead to different representations of
changes, although the actual changes in the document may be the same. It isthen
necessary to integrate the semantics of data and their changes in the algorithms
and models.

In this thesis, we will consider both the performance and quality for change-
control of semi-structured data.

Note that change-control of XML documents comes down to comparing two
versions of some XML document. This same technology may be used to find dif-
ferences (and similarities) between two different XML documents. For instance,
what are the differences between the vendor’s XML description of two car models.

Organization. Thethesisisorganized in 3 parts as follows:

In the first part, we present our work in change-control at the microscopic
scale, that isinside XML documents. First, we present an algorithm that, given
two versions of a document, detects changes that occurred between them, and
constructsadeltathat transforms one version of the document into the other. Then,
we propose aformal model for representing changes of XML documentsin XML.
In thethird chapter, we present a state of the art in thefield of change detection and
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representation, namely a comparative study that we conducted recently. Finally,
we will present our work in the context of the Xyleme project. Thiswork consists
in integrating the work on XML document changes into aweb crawler to be able
to monitor document changes on the web.

In the second part, we present our work on change-control at the macroscopic
scale, that is at the scale of the web. Indeed, we will first study the graph of the
web, and show an agorithm that can be used to compute the importance of pages
onling, i.e. while the web is crawled. It adapts dynamically to the changes of
the graph of the web. Then, we illustrate this topic by describing some work in
the context of “web archiving”. The web is a more and more valuable source of
information and this leads national libraries (e.g. the French national library) and
other organizationsto archiving (portions of) the web. Thisisin the spirit of their
work on other medias, for instance archiving books and newspapers.

Thelast part isaconclusion.

14



Chapter 2
Preliminaries

To further understand the context of thiswork, we first present some fundamental
notions that will be used through this thesis. In particular, we give an overview
of XML and DTDs and mention briefly XML Schema, SOAP and Web Services.
More insights may be found in [3, 104, 105].

XML

XML isaformat to represent semi-structured data. Semi-structured data may be
defined by comparing “structured” data and “un-structured” data.

e On one hand, un-structured datais typically represented by some text. For
instance, consider aletter from your bank containing important account in-
formations. Understanding the text itself is necessary to find the relevant
information. For instance, if the letter is written in Japanese, | would not
be able to find any information. It is a difficult task to create programs that
understand and use such data.

e On the other hand, structured data is for instance the data of a relational
database. It istypically in tables, with rows and columns, where each cell
contains a precise piece of information. In a bank account statement there
is typically atable with rows for each banking operation, and columns for
the transaction date, the amount of money, the operation descriptor, and the
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account balance. It is easy to write programs that use the data, for instance
a program that computes how much money is spent each week on average.
The problem isthat it is not always easy to put data in a structured format,
for instanceit would be difficult to put anewsarticlein arelational database.

Semi-structured data lay somewhere in between. In thisthesis, we focus on a
particular kind of semi-structured data model, namely XML.

An XML document is represented as a text file with opening and closing tags
that give atree structure to the data. XML does not use predefined tags. It hasthe
advantage of text filesthat it is easy to represent adocument asan XML document.
It has the advantage of structured data that there is a structure that can be used to
validate a document (see DTD and XML Schema [104]), to query the content and
to give a specific semantic to each piece of data [103]. A typical exampleis as
follows:

<letters>
<from> A.B.C. Bank
<address>
100 El1 Camino Real, 94025 Menlo Park
</address>
</from>
<to>
Jacques Dupond
<address>
21 Edgewater Bvd, 94404 Foster City
</address>
</to>
<date>
10/10/2003
</date>
<body>

Dear Sir,

Due to ...
And ...
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CHAPTER 2. PRELIMINARIES

We inform you that your account has been charged with <amount op-

eration="mensual-fee">$8</amount>
</body>
</letters>

An essential aspect of XML isthe tree structure of XML data. Indeed, while
the textual content is represented at the leaves of the tree, the internal nodes,
namely element nodes, represent the structure of the data. They facilitate the us-
age of data and the understanding of its precise semantics. Applications and users
can more easily understand the meaning of each piece of the document. Moreover,
when the document changes, applications and users can more easily understand
the meaning of these changes.

XML documents may be easily queried. For instance: find the name and
address of al customersto which we sent two letters for charging the mensual fee
the same month. Thisis not easy with textual data.

Note that this kind of query was already possible with relational databases.
However, the main problemisthat it isdifficult to organize the contents and know-
ledge of a company in arelational database, because each piece of information is
dightly different from the others, and structured databases require very precise
formats and schemafor their data.

XML has been adopted as a standard format for exchanging data. The coming
of Web Services, WSDL and SOAP based on XML, confirms the acceptance of
XML. We believethat XML isalso becoming astandard for storing data, although
thisis somewhat more controversial.

XML vs. HTML. TheHTML format isthe most common format for displaying
web pages. HTML stands for Hyper Text Markup Language [104, 105]. An
HTML file is a text file containing small markup tags. The markup tags tell the
web browser how to display the page.

The extreme simplicity of HTML and its flexibility has played an important
role in the success and the rapid development of the Internet by enabling quick
design of web pages. In particular, web browsers have been very tolerant towards
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syntactical and structural errors in the HTML source of the web pages they dis-
play. The undesired consequence is that most HTML documents have no real
structure and can not be used by data-intensive applications. Today, aswewill see
later in this thesis, the web is much like HTML.: it is a large container of know-
ledge, with little or no structure and no explicit way to find valuable information
among awide volume of “junk” [6].

While HTML enables a graphical representation of web pages that permits
humans to easily read documents, it does not facilitate the use and exchange of
data by programs.

XSL. Although this is not necessary for the comprehension of this thesis, we
mention briefly the role played by XSL towards the XML web. The Extensible
Stylesheet Language, XSL, is a language for expressing style sheets [104, 105].
Because XML does not use predefined tags (we can use any tags we want), the
meanings of thesetagsare not understood: <table> could meanan HTML table,
apiece of furniture, or something else. Therefor, ageneric browser does not know
a priori how to display an XML document. Some extra information is needed to
describe how the document should be displayed; and that is XSL.

For instance, XSL may be used to define the font style and size for the title of
adocument, a specific font and layout for a part of some document, and so on. We
have mentioned previously that most web pages on the web are HTML. However,
the content isin fact more and more stored as XML or structured data, and is often
exported as XML from a database. Then, XSL stylesheets are used on the server,
and using their layout and presentation information, the content is published as
HTML pages on the web.

Other languages can be used to display HTML pages based on program data
or database queries. The most popular are PhP, Sun JSP, Microsoft ASP.

XSLT XSL Transformations, XSLT, is alanguage for transforming XML doc-
uments into other XML documents. XSLT is designed for use as part of XSL,
which is a stylesheet language for XML. In addition to XSLT, XSL includes an
XML vocabulary for specifying formatting. X SL specifies the styling of an XML
document by using XSLT to describe how the document is transformed into an-
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other XML document that uses the formatting vocabulary. XSLT is also designed
to be used independently of XSL. However, XSLT isnot intended as a completely
general-purpose XML transformation language. Rather it is designed primarily
for the kinds of transformations that are needed when XSLT is used as part of
XSL.

DTD and XMLSchema. The purpose of a Document Type Definition (see
DTD [104]) is to define the legal building blocks of an XML document [105].
It defines the document structure with a list of legal elements, more precisaly it
specifies the legal tags and the structure of the elements of these tags. With DTD,
each XML file may carry a description of its own format with it. In particular,
groups of people may agree to use acommon DTD for exchanging data. Applica-
tions can use a standard DTD to verify that the data they receive from the outside
world isvalid. One may also use aDTD to validate his own data.

An important aspect of DTDs that we use in Chapter 3 is the possibility to
define ID attributes. Attributes are pieces of information (aname and avalue) that
are attached to element nodes of XML documents. Specifying inthe DTD that an
atributeisan ID Attribute indicatesthat the value of this specific attributeis
aunique identifier for the element node. Thisisin the spirit of keys in databases.

The purpose of an XML Schema is to define the legal building blocks of an
XML document, just likeaDTD. It islikely that very soon XML Schemas will be
used in most web applications as areplacement for DTDs. Here are some reasons:

e XML Schemas propose aricher typing than DTDs,
e XML Schemas are written in XML,
e XML Schemas support data types,

e XML Schemas support namespaces and other features that facilitate their
use in complex settings.

XPath XPath is a syntax for accessing parts of an XML document. More pre-
cisely, XPath uses path expressionsto identify nodesin an XML document. Some
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simple XPath expressions ook very much like the expressions you see when you
work with a computer file system:

company/listOfEmployees/employee/name

Web Services: SOAP, WSDL.. Briefly, Web Services offer the possibility to ex-
ecute remote function calls on the Internet. SOAP is the remote call specification,
and WSDL in the method interface specification.

SOAP is alightweight XML-based protocol for exchange of information in a
decentralized, distributed environment. The advantage of SOAP compared to ex-
isting technologies (such as RPC, DCOM, CORBA) isthat it usesHTTP and thus
itiseasily integrated in a large-scale web environment with firewalls and proxys.
SOAP provides away to communicate between applications running on different
operating systems, with different technologies and programming languages.

WSDL stands for Web Services Description Language. WSDL is an XML
format for describing network services. In the spirit of CORBA Interface De-
scription Language [87], it specifies the operations (or methods) of the service. It
also specifies the messaging protocol, mainly SOAP, as well as the web location
(URL) of the service.
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Chapter 3

An XML diff algorithm: XyDiff

Abstract. We present a diff algorithm for XML data. This work is motivated
by the support for change control in the context of the Xyleme project that is in-
vestigating dynamic warehouses capable of storing massive volume of XML data.
Because of the context, our algorithm has to be very efficient in terms of speed
and memory space even at the cost of some loss of “quality”. Also, it considers,
besides insertions, deletions and updates (standard in diffs), a move operation on
subtrees that is essential in the context of XML. Intuitively, our diff algorithm uses
signatures to match (large) subtrees that were left unchanged between the old and
new versions. Such exact matchings are then possibly propagated to ancestors
and descendants to obtain more matchings. It also uses XML specific informa-
tion such as ID attributes. We provide a performance analysis of the algorithm.
We show that it runs in average in linear time vs. quadratic time for previous
algorithms. We present experiments on synthetic data that confirm the analysis.
Since this problem is NP-hard, the linear time is obtained by trading some qual-
ity. We present experiments (again on synthetic data) that show that the output of
our algorithm is reasonably close to the ““optimal” in terms of quality. Finally we
present experiments on a small sample of XML pages found on the Web.

In the context of the Xyleme project [117], some preliminary work on XML diff
was performed by Amélie Marian. When she left for Columbia University, | took
over the work on XML diff. This section presents my algorithm for XML diff. It
was clearly influenced by original ideas by Abiteboul and Marian.
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The algorithm has been presented in [35].

3.1 Introduction

Users are often not only interested in the current value of data but also in changes.
Therefore, there has been alot of work around diff algorithm for all kinds of data.
With the Web and standards such as HTML and XML, tree data is becoming
extremely popular which explains a renewed interest for computing changes in
tree-structured data. A particularity of the Web is the huge volume of data that
has to be processed. For instance, in the Xyleme project [117, 119], we were
lead to compute the diff between the millions of documents loaded each day and
previous versions of these documents (when available). This motivates the study
of an extremely efficient, in terms of speed and memory space, diff algorithm for
tree data.

As mentioned above, the precise context for the present work is the Xyleme
project [119] that is studying and building adynamic World Wide XML warehouse,
i.e., adatawarehouse capable of storing massive volume of XML data XML, the
new standard for semistructured data exchange over the Internet [102, 3], alows
to support better quality services and in particular allowsfor real query languages
[45, 91] and facilitates semantic data integration. In such a system, managing
changes is essential for a number of reasons ranging from traditional support for
versions and temporal queries, to more specific ones such as index maintenance
or support for query subscriptions. These motivations are briefly considered in
Section 3.2.

The most critical component of change control in Xyleme is the diff mod-
ule that needs to be extremely efficient. Thisis because the system permanently
receives XML data from the Web (or internal) crawlers. New versions of the doc-
uments have to be compared to old ones without slowing down the whole system.

Observe that the diff we describe here is for XML documents. It can also be
used for HTML documents by XML-izing them, arelatively easy task that mostly
consistsin properly closing tags. However, the result of diff for atrue XML docu-
ment is semantically much moreinformative than for HTML. It includes semantic
pieces of information such as the insertion of a new product in a catalog.
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CHAPTER 3. AN XML DIFF ALGORITHM: XYDIFF

Intuitively, our algorithm works as follows. It tries to detect (large) subtrees
that were left unchanged between the old and new versions. These are matched.
Starting from there, the algorithm tries to match more nodes by considering an-
cestors and descendants of matched nodes and taking labels into consideration.
Our agorithm also takes advantage of the specificities of XML data. For instance,
it knows of attributes and attribute updates and treat them differently from ele-
ment or text nodes. It also takes into account ID attributes to match elements.
The matching of nodes between the old and new version is the first role of our
algorithm. Compared to existing diff solutions such as [56, 78], our algorithm is
faster and has significantly better matchings.

The other role of our algorithm is the construction of a representation of the
changes using a delta. We use the delta representation of [69] that is based on
inserts, deletes, updates and moves. For completeness, we present it in Section
3.4. Given amatching of nodes between the two documents, a delta describes a
representation of changes from the first to the second. A difficulty occurs when
children of anode are permuted. It is computationally costly to find the minimum
set of move operations to order them.

We show first that our algorithm is “correct” in that it finds a set of changes
that is sufficient to transform the old version into the new version of the XML doc-
ument. In other words, it misses no changes. Our algorithm runsin O(n x log(n))
time vs. quadratic time for previous agorithms. Indeed, it is also noticeable that
the running time of our algorithm significantly decreases when documents have
few changes or when specific XML features like ID attributes are used. In Sec-
tion 3.3, we recall that the general problem is NP-hard. Therefore, to obtain these
performance we have to trade-in something, an ounce of “quality”. The delta’'swe
obtain are not “minimal”. In particular, we may missthe best match and some sets
of move operations may not be optimal. It should be observed that any notion of
minimality is somewhat artificial since it has to rely on some arbitrary choice of
a distance measure. We present experiments that show that the delta’s we obtain
are of very good quality.

There has been alot of work on diff algorithms for strings, e.g., [65, 40, 106],
for relational data, e.g., [64], or even for tree data, e.g., [108, 25]. The originality
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of our work comes from the particular nature of the datawe handle, namely XML,
and from strict performance requirements imposed by the context of Xyleme.

Liketherest of the system, the diff and the versioning system are implemented
in C++, under Linux, with Corbafor communications. Today, it isfreely available
on the Web in open-source[34]. It has been used by several groupsover theworld.
In particular, it isincluded in the industrial product of Xyleme SA [119].

We performed tests to validate our choices. We briefly present some experi-
mentation. The results show that the complexity of our algorithm is indeed that
determined by the analysis, i.e., quasi linear time. We also evaluate experiment-
ally the quality of the diff. For that, we ran it on synthetic data. Aswe shall see,
the computed changes are very closein size to the synthetic (perfect) changes. We
alsoran it onasmall set of real data (versions of XML documents obtained on the
web). The size is comparable to that of the Unix Diff. This should be viewed as
excellent since our description of changes typically contains much more informa-
tion than a Unix Diff. We aso used the diff to analyze changes in portions of the
web of interest, e.g., web sites described as XML documents (Section 3.6).

We present motivationsin Section 3.2 and consider specific requirements for
our diff. A description of the change model of [69] is given in Section 3.4. We
mention previous diff algorithms in Section 3.3. Note that an extensive state of
the art is presented in Chapter 5, where we conduct abenchmark for XML change
detection. In Section 3.5, we present the XyDiff algorithm, and itsanalysis. Meas-
ures are presented in Section 3.6. The last section isa conclusion.

3.2 Motivations and requirements

In this section, we consider motivations for the present work. Most of these mo-
tivations for changes detection and management are similar to those described in
[69].

As mentioned in the introduction, the role of the diff algorithm is to provide
support for the control of changes in a warehouse of massive volume of XML
documents. Detecting changes in such an environment serves many purposes:
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e \ersions and Querying the past: One may want to version a particular
document [69], (part of) a Web site, or the results of a continuous query.
Thisis the most standard use of versions, namely recording history. Later,
one might want to ask a query about the past, e.g., ask for the value of some
element at some previous time, and to query changes, e.g., ask for the list
of items recently introduced in a catalog. Since the diff output is stored as
an XML document, namely a delta, such queries are regular queries over
documents.

e Learning about changes: The diff constructs a possible description of the
changes. It allows to update the old version V; and also to explain the
changesto the user. Thisisin the spirit, for instance, of the Information and
Content Exchange, ICE [110, 57, 61]. Also, different users may modify the
same XML document off-line, and later want to synchronize their respect-
ive versions. The diff agorithm could be used to detect and describe the
modificationsin order to detect conflicts and solve some of them [39].

e Monitoring changes: We implemented a subscription system [84] that
allows to detect changes of interest in XML documents, e.g., that a new
product has been added to acatalog. To do that, at the time we obtain a new
version of some data, we diff it and verify if some of the changes that have
been detected are relevant to subscriptions. Related work on subscription
systems that use filtering tools for information dissemination have been
presented in [120, 10].

e Indexing: In Xyleme, we maintain a full-text index over alarge volume of
XML documents. To support queries using the structure of data, we store
structural information for every indexed word of the document [8]. We are
considering the possibility to use the diff to maintain such indexes.

To offer these services, the diff plays a centra role in the Xyleme system.
Consider aportion of the architecture of the Xyleme systemin Figure 3.1, seenin
achange-control perspective. When anew version of adocument V' (n) isreceived
(or crawled from the web), it isinstalled in the repository. It isthen sent to the diff
module that a so acquires the previousversion V' (n — 1) from the repository. The
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diff modules computes a delta, i.e., an XML document describing the changes.
This delta is appended to the existing sequence of delta for this document. The
old version is then possibly removed from the repository. The alerter isin charge
of detecting, in the document V'(n) or in the delta, patterns that may interest some
subscriptions [84]. Efficiency is here a key factor. In the system, one of the web
crawlersloads millions of Web or internal pages per day. Among those, we expect
many to be XML. The diff hasto run at the speed of the indexer (not to slow down
the system). It also has to use little memory so that it can share a PC with other
modules such as the Alerter (to save on communications).

4 7\

Web Crawler

- J

( 3 V(n) .
XML Loader Diff Alerter

- J

V(n) V(n-1)

ndexer
) System
|
N

Repository Deta(V(n-1), V(n))

Figure 3.1: Xyleme-Change architecture

These performance requirements are essential. The context also imposes re-
quirements for the deltas: they should allow (i) reconstructing an old version, and
(i) constructing the changes between someversionsn and »’. Theseissuesare ad-
dressed in[69]. Thediff must be correct, inthat it constructs a delta corresponding
to these requirements, and it should also satisfy some quality requirements. Typ-
icaly, quality is described by some minimality criteria. More precisely, the diff
should construct a minimum set of changes to transform one version into the next
one. Minimality isimportant because it captures to some extent the semantics that
a human would give when presented with the two versions. It isimportant also in
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that more compact deltas provide savings in storage. However, in our context, it
is acceptabl e to trade some (little) minimality for better performance.

We will see that using specificities of the context (in particular the fact that
documents are in XML) alows the algorithm to obtain changes that are close
to the minimum and to do that very efficiently. The specific aspects of XyDiff
algorithm are asfollows:

e Our diffis, like[24, 25], tailored to tree data. It al so takes advantage of spe-
cificitiesof XML such as ID attributes defined inthe DTD, or the existence
of labels.

¢ Thediff hasinsert/del ete/update operations as in other tree diff such as[25],
and it also supports a move operation asin [24]. The move alows to move
an XML (possibly large) subtree.

3.3 State of the art

In a standard way, the diff tries to find a minimum edit script between the versions
attimet; | andt;. Thebasisof edit distancesand minimum edit script isthe string
edit problem [11, 65, 40, 106]. Insertion and deletion correspond to inserting and
deleting a symbol in the string, each operation being associated with a cost. Now
the string edit problem corresponds to finding an edit script of minimum cost that
transforms a string = into a string y. A most standard algorithm for the problem
works as follows. The solution is obtained by considering prefixes substrings of
x and y up to the i-th symbol, and constructing a directed acyclic graph (DAG) in
which path cost(z[1..i] — y[1..j]) is evaluated by the minimal cost of these three
possibilities:

cost(delete(x[i]))
cost(insert(y[j]))

+ cost(z[l..i — 1] — y[1..5])
)) + cost(x[1..i] — y[l..5 —1])
cost(subst(z[i],y[j])) + cost(z[l..i — 1] — y[l..5 — 1])

Note that for example subst(x[i], y[j]) is zero when the symbols are equals. The
space and time complexity are O(|z| * |y|).
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XML documents can represented as strings. Thus, string detection algorithm
may be applied to XML documents based on their string representation. But this
does not take into account the tree structure of the document. It is then possible to
do some post-processing of the result in order to obtain a delta that is compatible
with the tree structure of XML. However, it is preferable to consider specific al-
gorithms for change detection on tree structures, since they use the knowledge of
the structure of the document to improve their efficiency and the quality of their
results.

Kuo-Chung Tai [99] gave a definition of the edit distance between ordered
labeled tree and the first non-exponential algorithm to compute it. The insert
and delete operations are in the spirit of the operations on strings. deleting a
node means making its children become children of the node’s parent. Inserting
is the complement of deleting. Given two documents D1 and D2, the resulting
agorithm has a complexity of O(|D1]| % |D2| * depth(D1)? * depth(D2)?) in
time and space. Lu’s algorithm [68] uses another edit based distance. The idea
underlying this algorithm is, when a node in subtree D1 matches with a node in
subtree D2, to use the string edit algorithm to match their respective children.

In Selkow’s variant [97], insertion and deletion are restricted to the leaves of
the tree. Thus, applying Lu’'s algorithm in the case of Selkow’s variant results
in atime complexity of O(|D1| % |D2]|). Depending on the considered tree data,
this definition may be more accurate. It is used for example, in Yang's [121]
algorithm to find the syntactic differences between two programs. Due to XML
structure, it is clear that the definition is also accurate for XML documents. An
XML Document structure may be defined by a DTD, so inserting and deleting a
node and changing its children level would change the document’s structure and
may not be possible. However, inserting and deleting leaves or subtrees happens
quite often, because it corresponds to adding or removing objects descriptions,
e.g. like adding or removing people in an address book.

Recently, Sun released an XML specific tool named DiffMK [78] that com-
putes the difference between two XML documents. Thistool is based on the Unix
standard diff algorithm, and uses a list description of the XML document, thus
losing the benefit of the tree structure of XML.
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We do not consider here the unordered tree problem [125, 98] nor the tree
alignment [60] problems.

Perhaps the closest in spirit to our algorithm is LaDiff or MH-Diff [25, 24]. It
isalso designed for XML documents. It introduces a matching criteriato compare
nodes, and the overall matching between both versions of the document is decided
on this base. The faster version of the matching algorithm uses longest common
subsequence computations for every element node starting from the leaves of the
document. Itscostisin O(n = e + ¢*) where n is the total number of leaf nodes,
and e aweighted edit distance between the two trees. More precisely, e isthe sum
of the number of deleted and inserted subtrees, and the total size of subtrees that
moved for the shortest edit script.

Then an edit script conforming to the given matching is constructed in a cost of
O(n x d) where n isthe total number of nodes, and d the total number of children
moving within the same parent. Like most other algorithms, the worst case cost,
obtained here considering that large subtrees have moved, is quadratic in the size
of the data.

The main reason why few diff algorithm supporting move operations have
been developed earlier is that most formulations of the tree diff problem are
NP-hard [126, 24] (by reduction from the ’exact cover by three-sets'). MH-Diff,
presented in [24] provides an efficient heuristic solution based on transforming
the problem to the edge cover problem, with aworst case cost inin O(n?xlog(n)).

Our algorithm is in the spirit of Selkow’s variant, and resembles Lu's al-
gorithm. The differences come from the use of the structure of XML documents.
In Lu's algorithm, once a node is matched, we try to match its children using
the string algorithm. For this, children are identified using their label. But this
would not apply in practice on XML documents, as many nodes may have the
same label. So we use a signature computed over the children’s subtree. But then,
children may not be matched only because of a dlight difference in their subtree,
so we had to extend our algorithm by taking into consideration those children and
their subtree and matching part of it if possible.

Using this edit definition, we could add the support of move operations. Note
that a move operation can be seen as the succession of a deletion and an inser-
tion. However it is different in that we consider the cost of move to be much less
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than the sum of deleting and inserting the subtree. Thusit is clear that previous
algorithm wouldn’t compute the minimal edit script as we defined it.

Last but not least, our algorithm goal is slightly different from previous al-
gorithmsin that for performance reasons, we do not necessarily want to compute
the very minimal edit script.

3.4 Brief overview of the change representation
model

In this section, we present some aspects of the change model [69] that we use in
the present chapter. The presentation will be very brief and omit many aspects of
the complete model. A complete representation isgiven in [69] and in Chapter 4.

The simple model for XML datawe consider roughly consists of ordered trees
(each node may have alist of children) [3]. Nodes also have values (data for text
nodes and label for element nodes). We will briefly mention later some specific
treatment for attributes. The starting point for the change model is a sequence of
snapshots of some XML data. A deltais an XML document that represents the
changes between two consecutive snapshot versions of an XML document. It uses
persistent node identifiers, namely XIDs, in a critica way. We consider next the
persistent identification of XML nodes, and then the deltas, anovel representation
of changesin XML documents.

Persistent identification of nodes The persistent identification of nodes is the
basis of the change representation for XML documents we use. Persistent iden-
tifiers can be used to easily track parts of an XML document through time. We
start by assigning to every node of the first version of an XML document a unique
identifier, for example its postfix position. When a new version of the document
arrives, we use the diff algorithm to match nodes between the two versions. As
previously reported, matched nodesin the new document thereby obtain their (per-
sistent) identifiers from their matching in the previous version. New persistent
identifiers are assigned to unmatched nodes. Given a set of matchings between
two versions of an XML document, there are only few deltas that can describe the
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corresponding changes. The differences between these deltas essentially come
from move operations that reorder a subsequence of child nodes for a given par-
ent [69]. More details on the definition and storage of our persistent identifiers,
that we call XIDs, are given in [69]. The XID-map is a string attached to some
XML subtree that describes the X1Ds of its nodes.

Representing changes Thedeltaisaset of thefollowing elementary operations:
(i) the deletion of subtrees; (ii) theinsertion of subtrees; (iii) an update of the value
of atext node or an attribute; and (iv) amove of anode or a part of a subtree. Note
that it is a set of operations. Positions in operations are aways referring to posi-
tions in the source or target document. For instance, move(m, n, o, p, q) specifies
that node o is moved from being the n-th child of node m to being the ¢-th child of
p. The management of positions greatly complicates the issue comparing to, say,
changes in relational systems. Note also that the model of change we use relies
heavily on the persistent identification of XML nodes. It is based on “completed”
deltas that contain redundant information. For instance, in case of updates, we
store the old and new value. Indeed, a delta specifies both the transformation from
the old to the new version, but the inverse transformation as well. Nice mathemat-
ical and practical properties of completed deltas are shown in [69]. In particular,
we can reconstruct any version of the document given another version and the cor-
responding delta, and we can aggregate and inverse deltas. Finally, observe that
the fact that we consider move operations is a key difference with most previous
work. Not only isit necessary in an XML context to deal with permutations of the
children of a node (a frequently occurring situation) but also to handle more gen-
eral movesaswell. Moves are important to detect from a semantic viewpoint. For
example consider the XML document in Figure 3.2 (first version) and Figure 3.3
(second version).

Its tree representation is given in the left part of Figure 3.4. When the docu-
ment changes, Figure 3.4 shows how we identify the subtrees of the new version
to subtreesin the previous version of the document. Thisidentification isthe main
goal of the diff algorithm we present here. Once nodes from the two versions have
been matched, it is possible to produce a delta. The main difficulty, shown in
Section 3.5, isto manage positions. Assuming some identification of nodesin the
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<Category>
<Title>Digital Cameras</Title>
<Discount>
<Product>
<Name> tx123 </Name>
<Price> $499 </Price>
</Product>
</Discounts>
<NewProducts>
<Product>
<Name> zy456 </Name>
<Price> $799 «</Price>
</Product>
</NewProducts>
</Category>

Figure 3.2: XML Document Example (first version)

<Category>
<Title>Digital Cameras</Title>
<Discount>
<Product>
<Name> 2zy456 </Name>
<Price> $699 </Price>
</Product>
</Discounts>
<NewProducts>
<Product>
<Name> abc </Name>
<Price> $899 </Price>
</Product>
</NewProducts>
</Category>

Figure 3.3: XML Document Example (second version)
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Figure 3.4: Matching subtrees
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<delete XID="7" XID-map="(3-7)" parentXID="8" pos="1">
<Product>
<Name> tx123 </Name>
<Price> $499 </Price>
</Product>
</delete>

<insert XID="20" XID-map="(16-20)" parentXID="14" pos="1">
<Product>
<Name> abc </Name>
<Price> $899 </Price>
</Products>
</insert>

<move XID=13 fromParent="14" fromPos="1"
toParent= "8" toPos ="1" />

<update XID="11">
<old-value>
$799
</old-value>
<new-values>
$699
</new-value>
</update>

Figure 3.5: XML Delta Example

old version (namely postfix order in the example), the delta representing changes
from the old version to the new one may asin Figure 3.5.

It is not easy to evaluate the quality of adiff. Indeed, in our context, different
usages of the diff may use different criteria. Typical criteria could be the size of
the delta or the number of operationsin it. Choicesin the design of our agorithm
or initstuning may result in different deltas, and so different interpretations of the
changes that happened between two versions.

3.5 The XyDiff Algorithm

In this section, we introduce a novel algorithm that computes the difference
between two XML documents. Its use is mainly to match nodes from the two
documents and construct a delta that represents the changes between them. We
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provide a cost analysis for this algorithm. A comparison with previous work is
given in Section 3.3. Intuitively, our agorithm finds matchings between common
large subtrees of the two documents and propagate these matchings. XyDiff
uses both Bottom-Up and Top-Down propagation of matchings. Matchings are
propagated bottom-up and (most of the time), but only lazily down. Thisapproach
was preferred to other approaches we considered because it allows to compute the
diff in linear time. We next give some intuition, then a more detailed description
of our algorithm.

3.5.1 Intuition

To illustrate the algorithm, suppose we are computing the changes between XML
document D1 and XML document D2, D2 being the most recent version.

The starting point of the algorithm is to match the largest identical parts of
both documents. So we start by registering in a map a unique signature (e.g. a
hash value) for every subtree of the old document D1. If ID attributes are defined
in the DTD, we will match corresponding nodes according to their value, and
propagate these matching in a simple bottom-up and top-down pass.

Then we consider every subtreein D2, starting from the largest, and try to find
whether it is identical to some of the registered subtrees of D1. If so, we match
both subtrees. (This resultsin matching every node of the subtreein D1 with the
respective node of the subtree in D2.) For example, in Figure 3.4, we do not find
an identical subtree for the tree starting at Category, but the subtree starting at
Title is matched.

We can then attempt to match the parents of two matched subtrees. We do that
only if they have the same labels. Clearly, thereisarisk of forcing wrong matches
by doing so. Thus, we control the propagation of a matching bottom-up based on
the length of the path to the ancestor and the weight of the matching subtrees. For
example, a large subtree may force the matching of its ancestors up to the root,
whereas matching a small subtree may not even force the matching of its parent.

The fact that the parents have been matched may then help detect matchings
between descendants because pairs of such subtrees are considered as good can-
didates for amatch. The matching of largeidentical subtrees may thus help match-
ing siblings subtreeswhich are dightly different. To see an example, consider Fig-
ure 3.4. The subtree Name/zy456 is matched. Then its parent Product is matched
too. The parents being matched, the Price nodes may eventually be matched, al-
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though the subtrees are different. (This will allow detecting that the price was
updated.) When both parents have a single child with a given label, we propagate
the match immediately. (It is possible to use data structures that allow detecting
such situations at little cost.) Otherwise, we do not propagate the matching imme-
diately (lazy down). Future matchings (of smaller subtrees) may eventually result
in matching them at little cost.

The lazy propagation downward of our algorithm is an important distinction
from previous work on the topic. Note that if the two matched nodes have m and
m' children with the same label ¢, we have m x m/' pairs to consider. Attempting
this comparison on the spot would result in a quadratic computation.

We start by considering the largest subtrees in D2. The first matchings are
clear, because it is very unlikely that there is more than one large subtree in D1
with the same signature. However it is often the case that when the algorithm goes
on and considers smaller subtrees, more than one subtrees of D1 are identical to
it. We say then that these subtrees are candidates to matching the considered
subtree of D2. At this point, we use the precedent matches to determines the best
candidate among them, by determining which is closest to the existing matches.
Typically, if one of the candidate has its parent already matched to the parent of
the considered node, it is certainly the best candidate. And thanks to the order in
which nodes are considered, the position among siblings plays an important role
too.

When this part of the algorithm is over, we have considered and perhaps
matched every node of D2. There are two reasons why a node would have no
matching: either because it represents new data that has been inserted in the
document, or because we missed matching it. The reason why the algorithm
failed may be that at the time the node was considered, there was no sufficient
knowledge or reasons to alow a match with one of its candidates. But based
on the more complete knowledge that we have now, we can do a “peephole”
optimization pass to retry some of the rejected nodes. Aspects on this bottom-up
and top-down simple pass are considered in Section 3.5.3.

In Figure 3.4, the nodes Discount has not been matched yet because the con-
tent of its subtrees has completely changed. But in the optimization phase, we see
that it is the only subtree of node Category with thislabel, so we match it.

Once no more matchings can be obtained, unmatched nodesin D2 (resp. D1)
correspond to inserted (resp. deleted) nodes. For instance, in Figure 3.4, the
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subtrees for products tx123 and abc could not be matched and so are respectively
considered as deleted and inserted data. Finally, a computationally non negligible
task isto consider each matching node and decide if the node is at its right place,
or whether it has been moved.

3.5.2 Detailed description

The various phases of our algorithm are detailed next.

Phase 1 (Use ID attributes information): In one traversal of each tree, we
register nodes that are uniquely identified by an 1D attribute defined inthe DTD of
the documents. The existence of 1D attribute for a given node provides a unique
condition to match the node: its matching must have the same ID value. If such a
pair of nodesisfound in the other document, they are matched. Other nodes with
ID attributes can not be matched, even during the next phases. Then, a simple
bottom-up and top-down propagation pass is applied. Note that if 1D attributes
are frequently used in the documents, most of the matching decision have been
made during this phase.

Phase 2 (Compute signatures and order subtrees by weight): In one tra-
versal of each tree, we compute the signature of each node of the old and new
documents. The signature is a hash value computed using the node’s content, and
its children signatures. Thus it uniquely represents the content of the entire sub-
tree rooted at that node. A weight is computed simultaneously for each node. It
isthe size of the content for text nodes and the sum of the weights of children for
element nodes.

We construct a priority queue designed to contain subtrees from the new doc-
ument. The subtrees are represented by their roots, and the priority is given by
the weights. The queue is used to provide us with the next heaviest subtree for
which we want to find a match. (When severa nodes have the same weight, the
first subtree inserted in the queue is chosen.) To start, the queue only contains the
root of the entire new document.

Phase 3 (Try to find matchings starting from heaviest nodes): We remove
the heaviest subtree of the queue, e.g. a node in the new document, and construct
alist of candidates, e.g. nodes in the old document that have the same signature.
From these, we get the best candidate (see later), and match both nodes. If there
is no matching and the node is an element, its children are added to the queue.
If there are many candidates, the best candidate is one whose parent matches the
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Figure 3.6: Loca moves

reference node's parent, if any. If no candidate is accepted, we look one level
higher. The number of levels we accept to consider depends on the node weight.

When a candidate is accepted, we match the pair of subtrees and their ancest-
ors as long as they have the same label. The number of ancestors that we match
depends on the node weight.

Phase 4 (Optimization: Use structure to propagate matchings): We tra
verse the tree bottom-up and then top-down and try to match nodes from the old
and new documents such that their parents are matching and they have the same
label. This propagation pass significantly improves the quality of the delta and
more precisely avoids detecting unnecessary insertions and deletions. The main
issue of this part is to avoid expensive computations, so specific choices are ex-
plained in Section 3.5.3.

Phase 5 (Compute the delta): Thislast phase can itself be split in 3 steps:

1. Inserts/Deletes/Updates: Find all unmatched nodes in the old/new doc-
ument, mark them as deleted/inserted; record the effect of their dele-
tion/insertion to the position of their siblings. If atext node is matched but
its content has changed, we will mark it as updated.

2. Moves. Find all nodes that are matched but with non matching parents.
These correspond to moves. Nodes that have the same parent in the new
document as in the old document may have been moved within these par-
ents. Thisis discussed further.

3. These operations are reorganized and the delta is produced. (Details omit-
ted.)

Remark. Let usnow consider theissue of moves within the same parents. For
this, consider the example in Figure 3.6. Two nodes v (in the old version) and
v" (in the new version) have been matched. There may have been deletions, and
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also moves from v to some other part of the document, e.g. X and Y arein v but
not in v’. Conversely, there may be insertions and moves from some part of the
document to v’, e.g. two Z nodes are in v’ but not in v. The other nodes are pairs
of nodes, where one nodeisin v, and its matching nodein v’. For instance, the A
node in v matchesthe A nodein v'.

However, they need not be in the same order. When they are not, we need to
introduce more moves to capture the changes. In Figure 3.6, the lines represent
matchings. There are 6 pairs of matched nodesin v and »', corresponding to the
two sequences A, B,C, D, E, F (inv)and B,C, A, D, E, F (inv').

To compute a minimum number of moves that are needed, it suffices to find
a (not necessarily unique) largest order preserving subsequence. Here such a
sequenceis B,C, D, E, F'inv that matches B, C, D, E, F' in v' while preserving
the order. Then we need only to add move operations for the other pair of nodes,
here asingle operation is sufficient: move(v/Atov’/A). In XyDiff, we use amore
general definition and algorithm where the cost of each move correspondsto some
weight assigned to each node. This gives usthe “minimum” set of moves.

However, finding the largest order preserving subsequence is expensive for
large sequences. More precisely the time and space cost is quadratic in the num-
ber of nodes (see Section 3.3). Thus, for performance reasons, we use a heuristic
which does not guarantee optimality, but is faster and proves to be sufficient in
practice. It is used when the number of children is large, and it works by cut-
ting it into smaller subsequences with a fixed maximum length (e.g. 50). We
apply on them the longest common subsequence algorithms(see Section 3.5.3),
and merge the resulting subsequences. The result is a subguence that is clearly a
common subsequence of the two original lists of children, although in general not
the longest one.

For instance, consider the two sequences A, B,C,D,E,F,G,H,I,J and
D,E,J I, A B,C,F,G, H. Thetwo sequences are too large, and we apply the
quadratic subsequence algorithm only to their left and right half. More precisely,
we find the longest common subsequence of A, B,C, D, E and D, E,J, I, A,
which is D, E. Then we find the longest common subsequence of F,. G, H,1,.J
and B,C, F,G, H, which is F, G, H. By merging the two results, we obtain
D,E,F,G, H (Ilength 5) as a possible solution. However, the longest common
subsequence would have been A, B, C, F, G, H (length 6).
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Tuning Thedetailsof our algorithm require some choices that we describe next.
We also consider the tuning of some parameters of the system.

First, we have to select an appropriate definition for weight. The choice of a
weight has impact on the accuracy of matches, and therefore both on the quality
and speed of the algorithm. We will see in Section 3.5.3, that the weight of an ele-
ment node must be no less than the sum of itschildren. It should alsogrow in O(n)
where n isthe size of the document. We use 1+ sum(weight(children)). For text
nodes (i.e. leaves), we consider that when thetext islarge (e.g. along description),
it should have more weight than asimpleword. We use 1 + log(length(text)) as
ameasure.

Also, when matching two subtrees, it is not easy to choose how far to go up
in matching ancestor nodes in the hierarchy. A too small distance would result in
missing matches whereas a too large one may generate erroneous matches (e.g.
matching many ascendant nodes because two insignificant texts are identical).
We note the maximum distance (depth) d. We want d to be greater for larger
subtrees, i.e. for some node, d grows with the weight W of the corresponding
subtree. For performance reasons (time complexity), we show in Section 3.5.3
that, if no specific index is used, the upper bound for d isin O(log(n) % %0) where
W is the weight of the corresponding subtree, and W, the weight for the whole
document. However, thisimpliesin general that for a given subtree with weight
W, the distance d decreases to zero when the document becomes larger (i.e. W,
goes to infinity). In 3.5.3 we explain how to use indexes to enable greater values
of d. More precisely, we use d = 1 + - in XyDiff, where h is the lower value
between log(n) and the depth of the root the subtree starting from the root of the
document. The +1 value means that we use alevel-1 index (see Section 3.5.3).

Other XML features We briefly mention here two other specific aspects of
XML that have impacts on the diff, namely attributes and DTDs.

First, consider attributes. Attributesin XML are different from element nodes
in some aspects. First, anode may have at most one attribute of label ¢ for agiven
¢. Also, the ordering for attributes is irrelevant. For these reasons, we do not
provide persistent identifiersto attributes, i.e., a particul ar attribute node is identi-
fied by the persistent identifier of its parent and itslabel (so in our representation
of delta, we use specific update operations for attributes). When two elements are
matched between two consecutive versions, the attributes with the same label are
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automatically matched. We also use I D attributes (XML identifiers) to know if the
nodes owning these attributes should (or can’t) be matched aswell.

Now consider DTDs, a most important property of XML documents that al-
lows to type them. We have considered using this information to improve our
algorithm. For instance, it may seem useful to use the information that an ele-
ment of label ¢ has at most one child of label ¢’ to perform matching propagation.
Such reasoning is costly because it involves the DTD and turns out not to help
much because we can sometimes obtain thisinformation at little cost on the doc-
ument itself, even when the DTD does not specify it. On the other hand, the DTD
or XML Schema (or a data guide in absence of DTD) is an excellent structure to
record statistical information. It is therefore a useful tool to introduce learning
featuresin the algorithm, e.g. learn that a price nodeis more likely to change than
adescription node. Thiswas not used in our implementation.

3.5.3 Complexity analysis

In this section, we determine an upper bound for the cost of our algorithm, and we
explain the use of indexes in a critical part of the algorithm. For space reasons,
we do not present the algorithmic of the different functions here.

Note that the number of nodesis always smaller than n where n isthe size of
both document files.

Matching Nodes. First, reading both documents, computing the hash value
for signatures, and registering ID attributes in a hash table is linear in time and
space. The simple bottom-up and top-down pass -used in the first and fourth
phase- works by considering some specific optimization possibilities on each
node. These passes are designed to avoid costly tests. They focus on a fixed set
of features that have a constant time and space cost for each (child) node, so that
their overall cost islinear in time and space:

1. propagateto parent: Consider that node: isnot matched. If it hasachildren
¢ matched to some node ¢’ we will match i to the parent i’ of ¢'. If i hasmany
matched children c1, ¢2, ..., then there are many possibilities for i'. So we
will prefer the parent i’ of the larger (weight) set of children¢'1, ¢'2, .... The
computation is done in postfix order with atree traversal.
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2. propagate to children: If a node is matched, and both it and its matching
have a unique children with a given label, then these two children will be
matched. Again the cost is no more than of atree traversal.

During the XyDiff algorithm, the worst-case occurs when no node is matched.
In this case, every node is placed into the priority queue, with an inserting cost
of log(n) (ordered heap). This resultsin atotal upper bound of n * log(n). The
memory usage islinear in the size of the documents.

For every node, a call is made to the function that finds the best candidate
(the set of candidates is obtained using a hash table created in the first phase).
The general definition of this function would be to enumerate all candidates and
choose the best one as the one with the closest ascendant. It works by enumerating
candidates and testing the ascendant up to a given depth. Thusthe time cost isin
O(c = d) where ¢ is the number of candidates, and d the maximum path length
allowed for ancestor’s look-up. As previously described, we make d depend on
the weight 17/ of the subtree. Thanksto thefirst rules defined in previous section,
and because identical subtrees can not overlap, ¢ issmaller than 1V, /TV where W
is the weight for the subtree representing the whole document. The second rule
statesthat d = O(log(n) * W/W,). So the cost of afunction call isin O(log(n)).
The overall costisthenin O(n x log(n)).

Indexes. However, this upper limit for d means that when the document’s
size increases and W, goes to infinity, d goesto zero. Thisimplies that it would
not be possible to test all candidates. The issue occurs, for instance, when there
are multiple occurrences of some text node in alarge document, e.g. a company
name, an email address or the URL of some web site. We wish to be able to test
each candidate at least once. In other words, d should be greater than 1. We use
forinstanced = 1 + h = %0 To do so, a specific index (a hash table) is created
during initialization. The basic index retrieves all candidate nodes for a given
signature. This specific index retrieves all candidate nodes for a given signature
and a parent node identifier. Thisis equivalent to using the basic index for finding
all candidates with that signature, and then test each of them to find the ones with
the proper parent node (i.e. d = 1). In other words, the best candidate (if any)
is found in constant time. This generic solution works for any lower bound of
d by using as many indexes to access nodes by their grand-parent or ascendant
identifier. The extra cost isto construct these indexes during initialization. If D is
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the lower bound for d, the cost of constructing theindex isin O(D x n), where n
isthe size of the documents.

Delta Construction. The second part consists of constructing the delta using
the matchings obtained previously. Finding nodes that have been deleted or in-
serted only requires to test if nodes of both documents have been matched. It is
also clear that a node has moved if its parent and the parent of its matching do
not match. So thisfirst step islinear in time and space. The difficulty comes with
nodes that stay within the same parent. If their order has changed, it means that
some of them have 'moved’. As mentioned above, to obtain the optimal delta,
we should apply a’longest common subsequence’ algorithm on this sequence of
children [69]. These algorithmshave typically atime cost of O(s?/log(s)), where
s is the number of children, and a space cost of O(s?). However, in practical ap-
plications, applying this agorithm on a fixed-length set of children (e.g. 50), and
merging the obtained subsequences, provides excellent results and has atime and
space cost in O(s). We choose this heuristic, so the total cost for the document is
thenin O(n).

So the overall worst-case cost is O(n * (log(n)) where n is the size of the
document files (including the DTD, if any, that we also haveto read). The memory
usage islinear in the total size of both documents.

3.6 EXxperiments

In this section we present an experimental study of the algorithm. We show that it
achievesitsgoals, in that it runsin linear time, and computes good quality deltas.
(The linear space bound is obvious and will not be discussed.) We first present
results on some synthesized data (synthetic changes on XML documents). We
then briefly consider changes observed on the web. Due to space limitations only
asmall portion of the experimentswill be presented here. However, they illustrate
reasonably well what we learned from the experiments. More experiments are
presented in Chapter 5.

3.6.1 Measures on simulated changes

The measures show that the algorithm is very fast, amost linear in the size of
data. Also, sinceit does not guarantee an optimal result, we analyze the quality of
its result and show experimentally that it is excellent. For these experiments, we
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needed large test sets. More precisely, we needed to be able to directly control the
changes on a document based on parameters of interest such as deletion rate. To
do that, we built a change simulator that we describe next.

Change simulator The change simulator allowsto generate changes on some
input XML document. Its design is very important as any artifact or deviation in
the change simulator may eventually have consequencesin thetest set. Wetried to
keep the architecture of the change simulator very simple. The change simulator
reads an XML document, and stores its nodes in arrays. Then, based on some
parameters (probabilities for each change operations) the four types of simulated
operations are created in three phases:

[delete] Given a delete probability, we delete some nodes and its entire sub-
tree.

[update] The remaining text nodes are then updated (with original text data)
based on their update probability.

[insert/move] We choose random nodes in the remaining element nodes and
insert a child to them, depending on the insert and move probability. The type
of the child node (element or text) has to be chosen according to the type of its
siblings, e.g. we do not insert a text node next to another text node, or else both
data will be merged in the parsing of the resulting document. So according to
the type of node inserted, and the move probability we do either insert data that
had been deleted, e.g. that corresponds to a move, or we insert “origina” data.
For original data, we try to match to the XML style of the document. If the
required type istext, we can just insert any original text using counters. But if the
required node has to be a tag, we try to copy the tag from one of its siblings, or
cousin, or ascendant; thisisimportant for XML document in order to preserve the
distribution of labels which is, as we have seen, one of the specificities of XML
trees.

Note that because we focused on the structure of data, all probabilities are
given per node. A dlightly different model would be obtained if it was given per
byte of data. Note also that because the number of nodes after the first phase is
less than the original number of nodes of the document, we recompute update and
insert probabilities to compensate.

The result of the change simulator is both a delta representing the exact
changes that occurred, which will be useful to compare later with the algorith-
mically computed delta, and a new version of the document. It is not easy to
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determine whether the change simulator is good or not. But based on statistical
knowledge of changes that occursin the real web (see further), we will be able to
evaluate it and tune it. We tried to verify both by human evaluation of resulting
documents and by the control of measurable parameters (e.g. size, number of
element nodes, size of text nodes, ...) that the change simulator behaves properly.
The change simulator we presented here is the result of afew iterations. It seems
now to conform reasonably to our expectations.

Performance We verify next that the complexity is no more than the expected
O(n * log(n)) time. To do that, we use the change simulator to create arbitrary
sized data and measure the time needed to compute the diff algorithm. In the ex-
periment we report next, the change simulator was set to generate afair amount of
changesin the document, the probabilities for each node to be modified, deleted or
have a child subtree inserted, or be moved were set to 10 percent each. Measures
have been conducted many times, and using different original XML documents.

Time cost in micro seconds
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Figure 3.7: Time cost for the different phases
The results (see Figure 3.7) show clearly that the algorithm’s cost is almost

linear in time'. We have analyzed precisely the time spent in every function, but
due to lack of space, we do not provide full details here. Phases 3 + 4, the core of

A few values are dispersed because of the limitations of our profiling tool.
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Size of the delta (in bytes) computed by the diff algorithm
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Figure 3.8: Quality of Diff

the diff algorithm, are clearly the fastest part of the whole process. Indeed, most
of thetimeis spent in parts that manipulate the XML data structure: (i) in Phase 1
and 2, we parse the file [113] and hash its content; (ii) in Phase 5, we manipulate
the DOM tree [113]. The progression is also linear. The graph may seem a bit
different but that comes from the fact that the text nodes we insert turn out to be
on average smaller than text nodesin the original document.

A fair and extensive comparison with other diff programs would require alot
more work and more space to be presented. An in-depth comparison, would have
to take into account speed, but also, quality of the result (“optimality”), nature
of the result (e.g., moves or not). Also, the comparison of execution time may
be biased by many factors such as the implementation language, the XML parser
that is used, etc. Different algorithms may perform differently depending on the
amount and nature of changes that occurred in the document. For example, our
diff istypically excellent for few changes.

Quality We analyze next the quality of the diff in various situations, e.g. if
the document has almost not changed, or if the document changed alot. We paid
particular attention to move operations, because detecting move operations is a
main contribution of our algorithm.
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Using our change simulator, we generated different amounts of changes for
a sequence of documents, including a high proportion of move operations. In
Figure 3.8, we compare the size of the delta obtained using XyDiff to the size
of the original delta created by the change simulator. The delta obtained by the
simulator capturesthe edit script of operationsthat has been applied to the original
document to change it, and, in that sense, it can be viewed as perfect. Delta’'s sizes
are expressed in bytes. The original document size varies from a few hundred
bytes, to a megabyte. The average size of an XML document on the Web is about
twenty kilobytes. The pointsin Figure 3.8 are obtained by varying the parameters
of the change. Experimentswith different documents presented the same patterns.

The experiment shows that the delta produced by diff is about the size of
the delta produced by the simulator. This is the case even when there are many
updates including many move operations. For an average number of changes,
when about thirty percent of nodes are modified, the delta computed by the diff
algorithmis about fifty percent larger. Thisis precisely dueto the large number of
move operations that modify the structure of the document. But when the change
rate increases further, the delta gains in efficiency again, and is even sometimes
more accurate than the original delta, in that it finds ways to compress the set of
changes generated by the simulator. Note that the efficiency lost in the middle of
the range is very acceptable, because (i) the corresponding change rate is much
more than what is generally found on real web documents; and (ii) the presence
of many moves operations modifying the structure of the document israre on real
web documents.

3.6.2 Measures on real web data

We mention next results obtained by running our algorithm over more than ten
thousands XML documents crawled on the Web [79]. Unfortunately, few XML
documents we found changed during the time-frame of the experiment. We be-
lieve that it comes from the fact that XML is still in itsinfancy and XML docu-
ments on the web are less likely to change than HTML documents. Thisis also
due to the fact that the time-frame of the experiment was certainly too short. More
experiments are presented in Chapter 5.

We present here results obtained on about two hundred XML documents that
changed on a per-week basis. This sample is certainly too small for statistics,
but its small size allowed a human analysis of the diff outputs. Since we do not
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have here a“ perfect” deltaasin the case of synthesized changes, we compare our
resultsto Unix Diff. Our test sample also contains about two hundred large XML
documents representing metadata about web sites. We also applied the diff on a
few large XML files (about five megabytes each) representing metadata about the
entire INRIA web site.

Sizeratio of the delta compared to the Unix diff
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Resullts obtained on XML documents on the Internet ~ ©
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Deltaistwice large than Unix diff -----
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Figure 3.9: Delta over Unix Diff sizeratio

The most remarkable property of the deltas isthat they are on average roughly
the size of the Unix Diff result (see Figure 3.9). The outputs of Unix Diff and
of our agorithm are both sufficient to reconstruct one version from another, but
deltas contain a lot of additional information about the structure of changes. It
is interesting to note that the cost paid for that extra information is very small in
average.

It is also important to compare the delta size to the document’s size, although
this is very dependent on how much the document changed. Other experiments
we conducted [69] showed that the delta size is usually less than the size of one
version. In some cases, in particular for larger documents (e.g. more than 100
kilobytes), the deltasize is less than 10 percent of the size of the document.

One reason for the delta to be significantly better in size compared to the Unix
Diff isthat it detects moves of big subtrees. In practice, this does not occur often.
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A drawback of the Unix Diff isthat it uses newline as separator, and some XML
document may contain very long lines.

We have also tested XyDiff on XML documents describing portions of the
web, e.g., web sites. We implemented atool that represents a snapshot of a portion
of the web as an XML document. For instance, using the site www. inria. fr
that is about fourteen thousands pages, the XML document is about five mega
bytes. Given snapshots of the web site (i.e. given two XML documents), XyDiff
computes what has changed in the time interval. XyDiff computes the deltain
about thirty seconds. Note that the core of our algorithm is running for less than
two seconds wheresas the rest of the timeis used to read and write the XML data.
The delta’s we obtain for this particular site are typically of size one megabytes.
To conclude this section, we want to stress the fact that although the test set was
very small, it was sufficient to validate the formal analysis. More experiments are
clearly needed.

3.7 Conclusion

All the ideas described here have been implemented and tested. A recent version
of XyDiff can be downloaded at [34]. We showed by comparing our agorithm
with existing tree pattern matching algorithms or standard diff algorithms, that
the use of XML specificities |eads to significant improvements.

We already mentioned the need to gather more stati stics about the size of deltas
and in particular for real web data. To understand changes, we need to also gather
statistics on change frequency, patterns of changes in a document, in a web site,
etc. Many issues may be further investigated. For example we can extend our
use of DTDs to XML Schema. Other aspects of the actual implementation could
be improved for a different trade-off in quality over performance, e.g. we could
investigate the benefits of intentionally missing move operations for children that
stay with the same parent.
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Chapter 4

An XML representation of changes
In XML documents: XyDelta

Abstract There are several possible ways to represent the change information in
order to build a temporal XML data warehouse. One of them is to store, for each
document, some deltas that represent changes between versions of the documents.
It is then possible to issue queries on the deltas, in particular if they are themselves
XML documents. In this chapter, we present our work on the topic of representing
XML changes in XML, and more precisely we detail some formal aspects of our
representation, namely XyDelta

This work was performed with Amélie Marian, Serge Abiteboul and Laurent
Mignet. An article has been published in [69]. The project was originally started
by Amélie Marian before she left for Columbia University. | was then leading the
work. Marian worked on the definition of persistent identifiers (XIDs), and the
XML delta format. She also developed the first prototype of algorithms to apply,
revert and aggregate deltas. Finally, she conducted experiments to evaluate the
effectiveness of deltas for storing versions.

My contributions to that work are:

e The formal definition of set-based deltas as opposed to edit-scripts (see be-
low), and the notion of ““equivalent™ deltas.

e Linear time algorithms (and their implementation) to apply deltas, invert
them, and aggregate them. The core of this work consists in the definition
of an order relationship between nodes that is used to order operations.

e The formal (re)definition of move operations.
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This section presents my contributions. They have been clearly influenced by
the original work of Marian. Note that the XyDiff output discussed in previous
chapter is in XyDelta.

4.1 Introduction

In previous chapter, we explained how to detect changes between two versions of
an XML document. One possible use of change information is to use matching
between nodes and provide a persistent identification mecanism. Thisisdone, for
instance, by storing a“large” version of the document that contains an aggregation
of all past data fragments, with annotations that indicates during which period of
time each data fragment was present in the document. This approach is efficient
for databases where reliable identification information is available for each piece
of data, e.g. scientific datawith keys[19, 18].

Another possible use of change information is to store, for each document,
some deltas, that represent changes between versions of the documents. This
approach is often prefered to the previous one when the only information available
are snapshot versions of the documents. A famous example is CVS [39] that
uses deltas to store versions of program source files. In this chapter, we consider
this approach that we chose in the context of the Xyleme project [117] where
documents were retrieved from the Web. More precisely, we consider the use
of XML deltas to represent changes in XML documents. To analyze changes, it
is then possible to issue queries on the deltas, since they are themselves XML
documents.

Currently, there is no accepted standard on thistopic, although several propos-
als have been made since we introduced our deltas, in particular XUpdate [114],
DeltaXML [44] and Microsoft XDL [76]. In the next chapter, these proposals are
compared to our representation.

Deltas. Consider snapshot versions of an XML document at some time ¢. The
changes between the snapshot at time ¢, and the snapshot at time ¢ + 1, form a
deltadelta;sy1.

A delta delta; ; represents all changes that occurred between the snapshot of
the database (or document) at time 4, and the snapshot at time j. Such a delta
consistsin genera in change operations (e.g. insert, delete, update), that describe
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away of transforming version ; of the document into a version j. If i < j, the
deltaiscaled aforward delta. If : > 7, the deltais called a backward delta.

Most previous works uses deltas that are ordered sequences of operations.
More precisely, each delta delta; ; consists in a sequence of fine grain operations
Op1,Ops, Ops, ...,Op,. These operations are applied to the document version
¢ in the sequence order. The consistency of the deltais its ability to transform a
document version ; into some document version ;. Itispossiblethat one operation
inserts a node in an XML document, and another one inserts some other node
below it. The second operation is meaningless in absence of the first one.

Motivations. One of our goals was to consider, if possible, the atomic opera-
tions as independent one from an other. There are many advantages to such an
independance:

e Improve efficiency. It is often the case that a large number of changes oc-
curred between two versions of adocument. It isinefficient to apply themto
adocument if one hasto consider changes only in a specific ordering given
by the sequence. The ability to analyze groups of them separately is also
useful to monitor specific changes.

e Concurrency control. Management of independent changes gives more flex-
ibility for concurrency control, e.g. to manage updates by different users on
the same document.

e Semantics of changes. Each independent operation should have a precise
semantic. On the opposite, a drawback of editing scriptsisthat avalid edit
script may contain operationsthat have little semantics. For instance, it may
insert a node in the document, and later delete that node, or change several
time the same text node.

e Comparing changes. The same changes may be represented by several pos-
sible edit scripts. Our model makes comparison of deltas more efficient.

Storage Strategies. Note that when deltas are used, several storage policies can
be chosen [69, 29]. For instance, storing the latest version of the database, and
al delta,, , backward deltasin order to be able to reconstruct any version of the
database. Another possibility is to store the first version of the database, say at
t = 0, and all forward deltas delta,,. It isaso possible to store only snapshot
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versions of the database, and construct the deltas on the fly when necessary. This
issueisignored here.

Organization. InSection 4.2, wefirst proposeaformal definition for edit scripts
on XML documents, and we describe some properties of edit scripts. Then we
introduce XyScripts, which are specific edit scripts, and XyDelta, representing
a class of equivalent edit scripts. Finaly, we show that each edit script can be
transformed into “its” XyDelta. In Section 4.3, we show how our model can be
extended to support some specific XML concepts, and other editing operations
such as update and move. The last section is a conclusion.

4.2 From Edit-Scripts to XyDelta

In this section, we formally define XyDelta based on edit scripts for XML doc-
uments. We only consider two possible operations: insert and delete. Others
operations (update, move) are discussed in the next section.

In this section, we consider two version ¢ and j of an XML document. We sup-
pose that, in the first version of the document (i.e. ), each node can be uniquely
identified by an identifier named its XID. This means that each node of the first
document is tagged with an XID, as proposed by Marian and al. in [69].

Note that the implementationisin fact different than adding atag to each node.
We ignore here some subtlety of the management of XID as proposed by Marian
and al. We only assume that an XID-Map is attached (virtually) to the document.
An XID-Map is a string representation of sequence of XID. When an XID-Map
is (virtually) attached to some XML sutreg, it provides a persistent identifier to all
the nodes in the subtree.

4.2.1 A definition for an Edit-Script

For clarity reasons, we first consider only one type of node, e.g. element nodes.
In particular, we ignore attributes and text nodes. Extending the model to support
attributes and text nodes is straightforward and is briefly considered further.

We also ignore the problem of managing white-spaces in XML documents.
White-spaces are used in XML documents mainly for textual readability, but their
management may become a technical issue since XML tools and models (e.g.
DOM, SAX, XPath) give them different semantics.
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We first define delete and insert operations, then we define edit scripts and
some of their properties.

Definition 4.2.1 (delete)
A delete operation consistsin deleting some node » and the entire subtree rooted
at that node from a document. The del ete operation descriptor contains:

e The deleted subtree (starting at some node n), and its XID-Map (including
the XID of n).

e The XID of the parent node p of n.
e The position of n in the ordered sequence of children of p.

Consider a description of some delete operation on some document D. In or-
der for the delete operation to be valid with D, the node n must exists, its parent p
also, the position has to be correct and the subtree content listed with the operation
hasto be identical (including XI1Ds) to the subtree contained in the document.

An example of deleteisasfollows:

<delete
parentXID="18"
position="2"

DataXIDmap="(12-13)" >

<Tag>
This data is deleted,
including the tag "Tag"
<subtag>subtext</subtag>
</Tag>

</delete>

Definition 4.2.2 (insert)
An insert operation consists in inserting an XML subtree in some document. The
insert operation descriptor contains:

e The inserted subtree (starting at root n), and its XID-Map (including the
XID of n).
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e The XID of the parent node p where the subtree should be inserted.
e Theposition of n in the ordered sequence of children of p.

Thus, an insert operation is exactly symmetrical to an delete operation. Again,
consider some document D and an insert operation. For the operation to be valid
with D, the parent p must exists, the position must be valid (i.e. between 1 and the
number of children of p plus 1), and the XID-Map of the inserted subtree should
contain no X1D value that is used in some other place of the document. A typical
exampleis:

<insert
parentXID="18"
position="2"

DataXIDmap="(12-13)" >

<Tag>
This data is deleted,
including the tag "Tag"
<subtag>subtext</subtag>
</Tag>

</inserts>

It isimportant to note that the definition of insert and delete are symmetrical.
More precisely, consider some document D on which a delete operation may be
applied that results in document D’. Then, the insert operation obtained by re-
naming delete into insert and using the exact same attributes transforms D' into
D.

Definition 4.2.3 (Edit-Script)

An edit script is an ordered sequence of delete and insert operations. Let an edit
script S be defined by Op1, Ops, ..., Op,,. Let D, be exactly the document D. S'is
valid with D if:

e Op; is consistent with D;_;

e D; is the document resulting when applying Op; to D;_,
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From here, when we consider some edit script, we always mean a valid edit
script. We aso note S(D) the result document, i.e. D,,.

Definition 4.2.4 (Equivalence)
Two edit scripts .S and S’ are equivalent iff: (i) for each D, S is valid for S iff S’
is valid for D, (ii) for each D valid with S and S’, S(D) = S'(D)

Note that the notion of equality between documents is here the XML content
identity as defined in the XML standard [102]. For simplicity, we aso use aweak
notion of equivalence: S and S’ are equivalent for D, if both are valid with D,
and S(D) = S(D’). For instance, the following edit script is equivalent (for any
document containing a node with X1D 7; and no 99 node), to the empty script:

<insert DataXIDmap="99" parentXID="7" position="1">
<testTag/>

</insert>

<delete DataXIDmap="99" parentXID="7" position="1">
<testTag/>

</insert>

Definition 4.2.5 (Aggregation/Composition)

We define the aggregation of two edit scripts .S and S’ as the edit script corres-
ponding to the concatenation of their two sequences of operations. It is noted
S'(S).

If S isvalid with some document D, and S’ isvalid with S(D), then S’(S) is
valid with D.

Aggregation of edit scripts shows the drawback of this classical notion of edit
scripts. Consider for instance the previous example. S consistsin the first insert
operation, and S’ in the del ete operation that follows and del etes the inserted node.
For any document D such that S'(S) is valid with D, we can say that S’(S) is
equivalent to the empty script. However, strictly speaking, S’(S) isnot equivalent
to the empty script since there are some documents on which S’(.S) could not
be applied. With the model that we introduce next, we focus on equivalent edit
scripts by considering only the effect on their source and target document D and
S(D).
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4.2.2 Changing the order of operations in edit scripts

We present here a set of simple swap operations that transform some edit script
in an equivalent edit script by swapping two consecutive operations. By making
possible the swap of consecutive operations, we enable the complete reordering
of any edit script. Thisis the basis of the XyDelta model. More precisely, we
will be swapping to rewrite edit scripts into some ”normal form” with some nice
properties. We present a series of lemma that allow to handle the various cases
that may arise. The proofs are straightforward, so omitted.

Lemma 4.2.6

Let S be an edit script containing two consecutive delete operations X1 and X2
with the same parent node. Let pl1 and p2 be the respective node's positions. If
pl < p2, then S’ obtained by swapping the two operations, and replacing p2 by
p2 + 1,isequivaentto S.

The goal isthat position of delete operations should refer to the position of the
nodes before the operations are executed. An example is as follows. Consider a
node 1, with four child nodes 101, 102, 103 and 104. The edit script:

<delete parentXID="1" DataXIDmap="102" position="2">
<child2 />

</delete>

<delete parentXID="1" DataXIDmap="104" position="3">
<child4 />

</delete>

may be transformed into the equivalent:

<delete parentXID="1" DataXIDmap="104" position="4"> // !
<child4 />

</delete>

<delete parentXID="1" DataXIDmap="102" position="2">
<child2 />

</delete>
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In asimilar way, we define other swap possibilities:

Lemma 4.2.7
X1 and X2 are insert operations with the same parent. If p1 > p2, then the two
operations may be swapped, with p1 replaced by p1 + 1

The goal isthat the position of insert operations should refer to the position of
the nodes after the two operations are executed. Consider previous example. We
now want to insert the deleted nodes. A possible edit script is:

<insert parentXID="1" DataXIDmap="104" position="3">
<child4 />

</delete>

<insert parentXID="1" DataXIDmap="102" position="2">
<child2 />

</delete>

It may be transformed into the equivalent:

<insert parentXID="1" DataXIDmap="102" position="2">
<child2 />

</delete>

<insert parentXID="1" DataXIDmap="104" position="4"> // !
<child4 />

</delete>

Lemma 4.2.8

Let .S be an edit script, with two consecutive operations. an insert X 1 followed
by a delete X2, with the same parent, and the respective positions p1 and p2. If
pl = p2, then, for each document D such that S isvalid with D, S is equivalent
to S’ obtained by removing the two operations. If p1 < p2, then S’ is obtained by
swapping X 1 and X2, and replacing p2 by p2 — 1. If p1 > p2, then S’ is obtained
by swapping X1 and X2, and replacing p1 by p1 — 1.

Lemma 4.2.9
Let S be an edit script, with two consecutive operations: an insert (resp. delete)
X1, followed by a delete X2. Suppose that the following condition applies. (i)
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X1 and X2 do not have the same parent, (ii) X2 does not delete part of (or an
ancestor of) the subtree isinserted by X1 (resp. X2 do not delete an ancestor of
the subtree that is deleted by X'1). Such two operations are then said independent
operations. Then S isequivalent to S’ obtained by swapping X1 and X 2.

Lemma 4.2.10

Let .S be an edit script, with two consecutive operations: an insert (resp. delete)
X1, followed by a delete X2 (asin previous lemma). If X2 deletes part of a
subtree inserted by X1, then S’ obtained by removing X2, and modifying X1
according to X2, isequivalent to S. The modification of X 1 consistsin removing
from the inserted data in X1 the subtree deleted by X2. Note that the XID of
corresponding nodes should also be removed from X'1.

Lemma4.2.11

Let .S be an edit script, with two consecutive operations: an insert (resp. delete)
X1, followed by a delete X2 (asin previous lemma). If X2 deletes an ancestor
of asubtree deleted by X1, then S’ obtained by removing X1, and modifying X 2
accordingly, is equivalent to S. The modification of X2 consistsin adding in X2
the piece of data removed by X'1. The XID of corresponding nodes should also
be added to X 2.

Conversely, if X2 isan insert operations, a swap if possible by using smilar
updates.

A summary is shown in Figure 4.1. Some operations are marked not used,
meaning that we do not use them in the next section. Intuitively, they correspond
to a“correct” order between the two operations, so that we do not swap the two
operations.

4.2.3 A Definition for XyDelta

In thissection, wefirst introduce the notion of a XyScript. It isaspecific edit script
that represents a XyDelta, namely a set of operations. Then we extend the notion
of XyDelta, by showing that each edit script is equivalent to some XyScript.

Definition 4.2.12 (XyScript and XyDelta)
A XyScript is an edit script in which atomic operations are sorted according to
the COMPARE function in Figure 4.2. More precisely, operation O, occurs before
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Figure 4.1: Summary of swap operations to reorder Edit Scripts
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operation O, if and only if
COMPARE(Oq,0s) = true

. For each XyScript, that is a sequence of operations, we name XyDeltathe set of
these operations.

Intuitively, a XyScript is an edit script in which atomic operations are ordered
asfollows:

1. thedelete operations come first,

2. delete operations with the same parent node are ordered in the reverse order
of the deleted nodes positions

3. insert operations with the same parent node are ordered in the same order
asthe inserted nodes positions

The goal of these constraintsisthat: (i) node’ s position in delete isthe same as
the position of the node in the initial version of the document, (ii) node’s position
ininsert isthe same asthe position of the nodein thefinal version of the document.

One can show that thisistrue, i.e. the following theorem is true:

Theorem 4.2.13

The order of operations in a XyScript is such that the position of nodes for each
operation corresponds exactly to theinitial (for delete) or final (for insert) position
of the node in the document.

The proof is not detailed here. The proof is simple since the order (i.e. the
COMPARE function in Figure 4.2) was defined to match the exact requirements
that conduct to initial and final positions of nodes in each operation. This corres-
ponds to the comparisons depicted in the First Part of Figure 4.2. This defines
a partial order on the set of operations. The second part is used to define a total
order on the set of operations.

For instance, consider the deletion of two nodes in a document. A possible
edit script isasfollows:

<delete DataXIDmap="101" parentXID="1" position="1">
<deleteMel />
</delete>
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<delete DataXIDmap="102" parentXID="1" position="1">
<deleteMe2 />
</delete>

After the first node is deleted, the position corresponding to operations on
sibling nodes (with higher positions) are decreased by 1. Thus, in the second
delete operation, the second node position is now 1. This edit script is not a
XyScript. A XyScript would be:

<delete DataXIDmap="102" parentXID="1" position="2">
<deleteMe2 />

</delete>

<delete DataXIDmap="101" parentXID="1" position="1">
<deleteMel />

</delete>

By reversing the order of delete operations, the position used in each operation
correspond to the initial position of the nodes.

Based on the transformations described in previous section, we propose the
theorem below:

Theorem 4.2.14 (XyScript existence)

Any script S valid with some document D can be transformed in a XyScript S’
equivalent to S with D. Thus, for any script S valid with some document D, there
isan equivalent (with D) XyDelta.

This result is obtained by applying the bubble-sort algorithm on S. The order
relationship used is compliant with the order mentioned previously and is detailed
in Figure4.2. Animportant aspect isthe Second Part of Figure 4.2 that was added
to obtain atotal order on the set of operations. This was necessary to apply the
bubble-sort algorithm.

Note that each time a FALSE value is returned, the two operations must be
swapped, and are modified accordingly. For the algorithm to be correct, it is
necessary to verify that the modifications applied to the operation ensure that the
compare function returns TRUE after they have been modified and swapped. This
isindeed the case.

The XyScript is an ordered representation of operations. The unordered rep-
resentation of these operations, namely the set of operations, is the corresponding
XyDelta.
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At this point, it is aso important to note that bubble-sort algorithms have a
guadratic time complexity. One can use other techniques that are tailored to spe-
cific parts of the applications. For instance, in XyDiff, the sorting is achieved
by using the order of nodes in the origina and final documents, since they are
available when the deltais constructed.

Thefirst part of Figure 4.2 uses information that is contained in the operation
descriptors. However, the second part (the extension) uses information (ancestor
of nodes) that is not contained in the operation descriptors. It must be obtained
from the origina document. Thus, to convert an edit script into a XyDelta, the
original document isrequired. In order to manipulate XyDeltas (e.g. aggregation -
see below), we choseto al so store thisinformation in the header of the delta. More
precisely, we store, for each node that is deleted (resp. inserted) the nodes on the
path up to the root in the original (resp. final) document, and their position in the
original (resp. final) document. To save space, thisinformation is stored using two
tree structures in the XyDelta, one for the ancestor’s paths of delete operations,
and one for the ancestor’s paths of insert operations. Each tree summarizes a part
of the tree structure of the original (resp. final) document, that is necessary to
retrieve the ancestor path descriptors and the position of ancestor nodes.

Remark 4.2.1

[delete+insert] In some cases, there might be an insert operation that inserts some
data that has been deleted previously in the edit script. If (part of) the data deleted
and then inserted is strictly identical, one may want to remove the corresponding
operations. However, it is first necessary to verify that the persistent identifiers
(X1Ds) are the same on the inserted data than on the deleted data. If not, these two
operations are not equivalent to an empty operation.

Remark 4.2.2

[No original document] An important aspect of the algorithm based on Figure 4.2
is that it does not require to use the original document. The proof is obtained
by considering all possible tests that are conducted. For most unitary tests that
consider the type and position fields of operations, thisisobvious. For some other
tests, that consider ascendant or descendant expressions, thereis a precise reason.
Thereason isthat insert and del ete operations contain the X1D-Map of the subtree
below the node on which the operation applied. This information is sufficient to
process the tests shown in Figure 4.2. We explain below that for this reason, the
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boolean COMPARE (Operation X1, Operation X2) {
// === First Part ===

// delete operations are before insert operations
if (X1.Type=="delete")&&(X2.Type=="insert") {
return TRUE;

if (X1.Type=="insert") &&(X2.Type=="delete") {
return FALSE;
}

// in the case of two delete operations
// -descendant subtrees should be deleted first
// -sibling nodes are deleted first on the right
if (X1.Type=="delete")&&(X2.Type=="delete") {
if (X1.node DESCENDANT OF X2.node) return TRUE;
if (X2.node DESCENDANT OF X1.node) return FALSE;

}

// in the case of two insert operations
// -ancestor nodes should be inserted first
// -sibling nodes are inserted first on the left
if (X1.Type=="insert") &&(X2.Type=="insert") {
if (X2.parent DESCENDANT OF X1.node)
OR (X2.parent EQUALS X1.node) return TRUE;
if (X1.parent DESCENDANT OF X2.node)
OR (X1l.parent EQUALS X2.node) return FALSE;

}

// === Second Part ===
// This part is necessary for a total order

Let P be the first common ancestor of X1 and X2
Let P be the first common ancestor of X1.node and X2.node
// 'first’ mean closest to X1.node and X2.node
// for instance, P may be the common par-
ent of X1.node and X2.node

Let PX1 be the ancestor of Xl.node (or X1l.node) that is a child of P
Let PX2 be the ancestor of X2.node (or X2.node) that is a child of P

if (X1.type="delete")&&(X2.type="delete") {
return (PX1l.Position>PX2.Position) ;
}

else if (X1l.type="insert")&&(X2.type="insert") {
return (PX1l.Position<PX2.Position) ;

Figure 4.2: Compare function to find the XyDelta order of Edit Scripts
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move operation must contain the X1D-Map of the moved subtree, although it does
not seem necessary at first glance.

Corollary 4.2.15

Let S; and S, be two XyScripts, such that S; isvalid on D, S;(D) = D" and
Sy isvalid on D'. Thereisa XyScript S that isvalid on D and equivalent to the
aggregation of S; and .S;.

It is possible to create a XyDelta aggregation algorithm that does not require
to use the original document. It can be done as follows:

1. Output as a sequence of operations the Edit Scripts corresponding to Xy-
Delta S; and S,

2. Merge the two sequences of operations as an Edit Script £

3. Find the XyScript for £
Summary We proved that any edit script is equivalent to a XyScript, and thus
may be represented by a XyDelta. A XyDeltais a set representation of changes
between two documents. Given a XyDelta, one can construct the corresponding

XyScript. XyScripts are edit scripts that have specific properties respectively to
the attribute of their operations.

4.3 Extending the Model

In this section, we propose several extensions to the XyDelta model. Some of
them are used to improve the support of XML data (e.g. text nodes, attributes),
others enrich the update mode (e.g. the move operation).

4.3.1 Text nodes and Attribute nodes

To add the support of text nodes, we simply consider text nodes as nodes with no
children. The support of attributesis donein the spirit of XML.:

1. attribute nodes are attached to some element node
2. attribute nodes have no XID: they are identified by the pair consisting of:

(i) the XID of their element node and (ii) their attribute name
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The attribute operations consist in adding an attribute (name and value) to some
element, removing an attribute name and value, or modifying the value of some
attribute. They are described as follows:

<attr-insert
nodeXID L

attrName R

attrvalue oL />
<attr-delete

nodeXID oo

attrName toou"
attrvalue Lo /s

<attr-modify
nodeXID = "o,
attrName = "..."
Oldvalue = ".._.."

NewValue = "..." />

As in previous section, note that the insert and delete operations are exactly
symmetrical. In particular, the value of the attribute is stored along with the delete
operations, although this was not strictly necessary, in the context of edit scripts
that go only forward.

Note also that the order of attribute operationsis not very important. However,
in the context of edit scripts, it is important that attribute operations only occur
when their element node exists, i.e. before it has been deleted or after it has been
inserted (if any of these two operations occurs).

Others . We do not detail here how to handle specific XML concepts such as
entities, comments, CDATA vs. PCDATA. As previously mentioned, the proper
handling of white-spaces within text representations of XML may become a dif-
ficult task due to variations between approaches such as DOM, SAX, XQuery,
XPath, ...
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4.3.2 Adding Update and Move operations

In this section, we present update and move extensions to the model. But first,
we introduce the notion of matching between the nodes of the original and final
documents.

Consider a node that is present in the two versions of the document, with the
same XID. It has not been deleted, it has not been inserted. We say that the two
versions of that node define a matching. A node is matched if we can find his
corresponding node in the other version of the document.

Update Update operations represent the changing value of a text node that is
attached to some element node. We consider update operations if and only if:
(1) an element node « is matched between the two versions of the document and
(ii) it has a single child node that is a text node. In this case, if the text node
value changes, there is exactly one insert and one delete operation with the par-
ent XID corresponding to a. We annotate these two operations with an attribute
update="yes" indicating that the pair corresponds in fact to a single update
operation. Based on this, it is possible to improve furthermore the syntax of up-
date by writing, in the XML document representing the delta, a single update
operation for each pair. Only when the delta is processed, the update operation
may be split into the corresponding insert and delete pair (if necessary to execute
it). The syntax isas follows:

<update
parentXID="..."
OldDataXIDmap="(...)"
NewDataXIDmap="(...)" >

<01ldText> This is the old text node value </0ldTexts>
<NewText> This is the new text node value </NewText>
</update>

Note that the position is not listed since it is always 1 by definition. Indeed,
remind that we only consider the update of text as a single child node. We do not
consider, for instance, the update of some text in:

<root>
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<x/>

text

<y/>
</root>

In some applications, the system may keep the same XID for the changing text
node. In other words, the semantics is that the text node is the same although its
value changes. In that case, the 01dDataXIDmap and NewDataXIDmap attrib-
utes have the same value. They may be grouped within a single DataXIDmap
attribute. In other applications, the XIDs are used to quickly reconstruct versions
of the documents, or to index the textual content of document. Thus, the system
may prefer to assign anew XID to text nodes each time their value changes.

In some XML documents, the text nodes may contain very long strings. In
that case, a possible extension is to use string diffs (or text-based diffs) on them.
This results in shorter deltas, and describes changes with slightly more accuracy
from a semantic point of view.

Move Aswe have seen in previous chapter, move operations are important both
for the efficiency and the semantics of the deltas. Our model has a move opera-
tion. This distinguishes from other work without move. It turns out that for some
purposes, it is useful to cut it in delete/insert but semanticaly it isa move. The
semantic of a moveis different than a pair of delete and insert in that it keeps the
persistent identifiers of nodes.

We handle move operationsin away that is similar to updates. More precisely,
apair of insert and delete operations that removes and then inserts the same data,
with the same XIDs, is annotated as a move operations using a move="yes"
attribute. Again, the storage of move operations may be achieved using a single
XML subtree as follows:

<move
sourceParentXID="..."
sourcePosition ="..."
targetParentXID="..."
targetPosition ="..."
DataXIDmap ="(...)" >

</moves>
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Two important things may be noted:

e The DataXIDmap attribute may seem unnecessary. Indeed, storing the
XID of the subtree root node is in some cases sufficient. However, this
DataXIDmap iS hecessary, as seen previously, to compare and order the
operations of the corresponding edit script, for instance to aggregate with
some other XyDelta.

e It isin general not necessary to store the data that is moved. Indeed, the
datais present both in the source and target version of the document. Thus,
given one of the two versions, it is always possible to reconstruct the other
version.

It is important here to mention that it is the role of the creator of the delta to
decide whether a pair of delete and insert is a move or not. More precisely, con-
sider some fragment of XML tree that is present in both documents. Depending
on various criteria, the change detection tool may decide: (i) that this datais per-
sistent from one version to another and has been moved (if parents are different),
then the data keeps the same XIDs (ii) that the two data sets are different data
fragments, although having an identical value. In other words:

(i) the identity between data fragments is defined based on the X1Ds, and not
on text value and element names,

(i) the semantic of moveisto consider the moving some data around the docu-
ment, keeping the same XIDs

(iii) it is the change detection algorithm who decides whether data fragments
with identical values (text nodes, tag names) have the same XIDs

Cutting Move A move operations consists both in deleting a part of the docu-
ment and inserting it in another place. Since our model uses precises rules with
respect to the nodes positions and order of operations, it turns out that the proper
processing of move is achieved but cutting it into a*“ special” pair of delete/insert.
For instance, when aggregating deltas, the to position of moves from the first
delta, and the £ rom position of moves from the second delta have to be updates,
whichis easily achieved by considering the corresponding insert and del ete oper-
ations. Semantically, the “special” pair of delete/insert isamove, in particular it
keeps the persistent identifiers of nodes.
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4.4 Properties of XyDelta

In this section, we present various properties of XyDeltas, and mention briefly the
corresponding algorithms and their cost.

XyDelta: Summary Intuitively, aXyDeltaisan XML file that represent a set of
operations transforming one XML document into another. A XyScript is an edit
script. A XyDelta represents a set of operations which, when ordered correctly,
provides a XyScript. The operations descriptors, and in particular the nodes iden-
tifiersand positions, refer to the first version of the document (for delete) or to the
second version (for insert). Update and move operations are supported.

Creating a XyDelta There are several waysto create a XyDelta.

e One is to construct a set of operations given the two versions of the doc-
ument. Thisis done typically by XML diff programs. The algorithms and
cost may vary. A comparative study is conducted is Chapter 5.

e A second possibility is to start from a document and generate the set of
operations. The operations may be generated randomly, for instance in a
changes simulator that we implemented, or they may be generated based on
users actions, for instance in an XML editor.

e A third possibility is, given an edit script, to transform it in the correspond-
ing XyDelta. We proved that this is always possible using a bubble-sort
algorithm, which cost is quadratic. The comparison of two operations has a
O(l) cost, where [ is the maximum length of their XID-Map. Thus, the sort-
ing cost would be O(n?x1). However, one can use faster sorting algorithms,
such as quick-sort in O(n * log(n)). The modifications of nodes positions
are then computed on position tables that are stored for each node. The cost
isin O(Ixnx (log(n) + log(f))) where f isthe maximum number of nodes
with the same parent.

Inverse of a XyDelta Thanks to the exact symmetry between insert and delete
operations, theinverse of a XyDeltaawaysexists. It isobtained by simply renam-
ing each insert into delete, and each delete into insert. For move (resp. update), it
suffices to think of move (resp. update) as a pair of delete and insert to obtain the
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inverse. The space cost is a constant, and the time cost is linear in the number of
operations.

Applying a XyDelta to a document To apply aXyDeltato adocument, wefirst
generate the corresponding edit script by ordering the set of operations according
to the rules presented previously. Note that positions are not modified since, by
definition of XyDelta, they already correspond to the correct positions according
to this order. In particular, delete operations are executed first, and then insert
operations. Obviously, we keep the subtrees which are deleted as part of a move
operation until they are inserted again. We can then use it when executing the
insert part of the move. The cost of ordering a XyDeltaisin O(l x n * log(n)),
where n is the number of operations, and I the maximum length of an XID-Map
in the delta

Aggregating XyDeltas To aggregate XyDelta, we first generate the two corres-
ponding edit scripts, and then we find the XyDelta corresponding to their concat-
enation. The cost isthe sum of the cost of ordering the operationsin the two deltas,
plusthe cost of finding the XyDelta. Thus, thetotal costisO(1x(n1+n2)*log(f)),
wheren1 and n2 are the number of operationsin each delta, / the maximum length
of an XID-Map in these deltas, and f the maximum number of nodes with the
same parent.

4.5 Conclusion

We have presented a formalism for representing XML changesin XML. The Xy-
Deltathat we obtain have nice mathematical properties.

Thisframework has been implemented as part of the XyDiff [34] project.

We believe that further work is necessary on the topic of manipulating sev-
eral deltas to manage the history of a document, retrieve versions and query
changes. Marian worked on the topic of storage strategies based on deltas. Other
approaches would be interesting, such as storing an extended version of the
document with time information [23], and generating deltas on the fly when
necessary.
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Chapter 5

A comparative study of XML diff
tools

Abstract. Change detection is an important part of version management for
databases and document archives. The success of XML has recently renewed
interest in change detection on trees and semi-structured data, and various al-
gorithms have been proposed. We study here different algorithms and represent-
ations of changes based on their formal definition and on experiments conducted
over XML data from the Web. Our goal is to provide an evaluation of the quality
of the results, the performance of the tools and, based on this, provide guidelines
to users for choosing the appropriate solution for their applications.

| started this work and lead it in a cooperation with Talel Abdessalem and
Yassine Hinnach.

5.1 Introduction

The context for the present work is change control in XML data warehouses. In
such a warehouse, documents are collected periodically, for instance by crawling
the Web. When a new version of an existing document arrives, we want to un-
derstand changes that occurred since the previous version. Considering that we
have only the old and the new version for a document, and no other information
on what happened between, a diff needs to be computed. A typical setting for
the diff algorithm is as follows: the input consists in two files representing two
versions of the same document, the output is adelta file representing the changes
that occurred between them.
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In this chapter, we analyze different proposals. We study two dimensions of
the problem: (i) the representation of changes (ii) the detection of changes.

(i) Representing Changes To understand the important aspects of changes rep-
resentation that we consider in this chapter, we recall briefly some possible ap-
plications:

¢ In Version management [29, 69], the representation should allow for effect-
ive storage strategies and efficient reconstruction of versions of the docu-
ments.

e In Temporal Applications[26], the support for a persistent identification of
XML tree nodes is mandatory since one would like to identify (i.e. trace) a
node through time.

e In Monitoring Applications [27, 84], changes are used to detect events and
trigger actions. The trigger mechanism involves queries on changes that
need to be executed in real-time. For instance, in a catalog, finding the
product of type 'digital camera’ and of which the price has decreased.

The deltas we consider here are XML documents summarizing the changes.
The choice of XML is motivated by the need to exchange, store and query these
changes. Since XML is a flexible format, there are different possible ways of
representing the changes on XML and semi-structured data[23, 63, 69, 114], and
build version management architectures [29]. In Section 5.3, we compare several
change representation models.

The results of our study indicate two main directions to represent changes:

(i) one is to summarize the two versions of the documents and add change
information (e.g. DeltaXML [63], XDL [76]). The change information
represents the operations that transform one version into another.

(i) the other isto focus on edit operations, i.e. to give alist of edit operations
that transform one version into another (e.g. XUpdate [114], XyDelta [69])

The advantage of (i) isthat the summary of the documents gives a useful con-
text to understand change operations. The drawback of (i) is that it (often) lacks
a formal model or mathematical properties (e.g. aggregation), in particular, no
precise framework for version management or even querying has been devel oped.
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On the other hand, (ii) may provide a better formal model of edit operations. In
(i1), the delta uses identifiers to refer to nodes of the document. The drawback
of (ii) isthat such deltas do not contain sufficient information for monitoring or
to support queries, i.e. the document has to be processed. Thus, they are less
intuitive to read and use in simple applications.

(if) Change Detection In some applications (e.g. an XML document editor) the
system knows exactly which changes have been made to a document, but in our
context, the sequence of changes is unknown. Thus, the most critical component
of change control is the diff module that detects changes between an old version
of a document and the new version. The input of a diff program consistsin these
two documents, and possibly their DTD or XMLSchema. Its output is a delta
document representing the changes between the two input documents. Important
aspects are as follow:

e Correctness: A diff iscorrect if it finds a set of operationsthat is sufficient
to transform the old version into the new version of the XML document. In
other words, a diff is correct if it misses no changes. For some application,
one may want to trade correctness for performance, for compactness of the
delta or to focus only on certain changes. Thisis not considered here, all
diff algorithms we present here are correct.

e Minimality: Insomeapplications, thefocuswill be onthe minimality of the
result (e.g. number of operations, edit cost, file size) generated by the diff.
Thisnotionisexplainedin Section 5.2. Minimality of theresult isimportant
to save storage space and network bandwidth. Also, the effectiveness of
version management depends both on minimality and on the representation
of changes.

e Semantics: Some algorithms consider more than the tree structure of XML
documents. For instance, they may consider keys (e.g. ID attributes defined
in the DTD) and match with priority two elements with the same tag if
they have the same key. For instance, a product node in a catalog
is identified by the value of its name descendant node. In the world of
XML, the semantics of data is becoming extremely important [103] and
some applications may belooking for semantically correct results or impose
semantic constraints. For instance it is considered correct to update the
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price node of aproduct, but it may be considered incorrect to update the
product’s reference node (product identifier).

e Performance and Complexity: With dynamic services and/or large amounts
of data, good performance and low memory usage become mandatory. For
example, some algorithms find a minimum edit script (given a cost model
detailed in Section 5.2) in quadratic time and space, whereas others run in
linear time (and space).

e “Move” Operations: The capability to detect move operations (see Sec-
tion 5.2) is only present in certain diff algorithms. The reason isthat it has
an impact on the complexity (and performance) of the diff and also on the
minimality and the semantics of the resullt.

To explain how the different criteria affect the choice of a diff program, con-
sider some cooperative work application on large XML documents. The large
XML documents are replicated over the network. We want to enable concurrent
work on these documents and efficiently update the modified parts. Thus, a diff
between XML documentsis computed and the deltais used to broadcast changes
to the various copies. Then, changes can be applied (propagated) to the files rep-
licated over the network. When a“small” diff ispropagated, (i) the bandwidth cost
is recuded, and (ii) it is less likely that it conflicts with an update on a different
site. On the other hand, if thereislittlereplication (and littlerisk of conflicts), itis
more important to compute the diff fast than to minimize its size. Note that with
some diff programs, it is even possible to use the support of keys (e.g. support
of DTD ID attributes) to divide the document into finer grain structures, in order
to implement precise locking mecanisms and handle more efficiently concurrent
transactions.

Our study considers several possible design strategies for XML diff tools. We
will see the cost of quadratic algorithm, e.g. MMDiff doesn’t scale up to megabyte
files. We also show the impact of the use of greedy rules (e.g. XyDiff) that save
time, but decrease the minimality of results. Using simple examples, we detail
how the combination of quadratic algorithm with preprocessing steps (e.g. prun-
ing thetree) generates high quality (but not minimal) results. We will also mention
important features of diff tools that allow to improve the accuracy of results.
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Experiment Settings Our comparative study relies on experiments conducted
over XML documents found on the web. Xyleme crawler [119] was used to crawl
more than five hundred millionsweb pages (HTML and XML) in order to find five
hundred thousand XML documents. Because only part of them changed during
the time of the experiment (several months), our measures are based roughly on
hundred thousand XML documents. Only some experiments were run on the
entire set. Most were run on sixty thousand documents because of the time it
would take to run them on al the available data. It is also interesting to run it on
private data (e.g. financial data, press data). Such data is typically more regular.
For instance, we ran our tests on several versions of XML data from DBLP [66].
We intend to conduct other experimentsin the future.

Remark Our work was done primarily for XML documents. It can also be
used for HTML documents by first XML-izing them. For instance, a relatively
easy task consists in properly closing tags. However, change management (de-
tection+representation) for a “trug” XML document ! is semantically much more
informativethan for HTML. It includes pieces of information such astheinsertion
of particular subtrees with a precise semantics, e.g. anew product in a catalog.

The rest of the chapter is organized as follows. First, we present the data
model, operation model and cost model in Section 5.2. Then, we compare change
representations in Section 5.3. In Section (5.4), we compare change detection
algorithms and their implementation programs. In Section 5.5, we present a per-
formance analysis (time and space). Finally, we study the quality of the results of
diff programsin Section 5.6. The last section concludes the chapter.

5.2 Preliminaries

In this section, we introduce the notions that will be used along the chapter. The
data model we use for XML documents is labeled ordered trees as in [69]. We
also mention some algorithms that support unordered trees.

Operations The change model isbased on editing operations asin [69], namely
insert, delete, update and move. There are two possible interpretations for these
operations: Kuo-Chung Tai’s model [99] and Selkow’s model [97].

Lor for an HTML document that has been XML -ized using advanced techniques
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In [99], deleting a node means making its children become children of the
node’s parent. For instance, deleting <product > in the subtree

<catalog><products><price value="\$99"/></product></catalog>
yields the result
<catalog><price value="\$99"/></catalog>

Thismodel may not be appropriate for XML documents, since deleting anode
changes its depth in the tree and may aso invalidate the document structure ac-
cording to its DTD (or XML Schema). In general, this model is not appropriate
for object models 2 where the type of objects and relations between them isim-
portant. It seems more appropriate, for instance, to applications such as biology
where XML is used to represent DNA sequences [107].

Thus, for XML data, we use Selkow’s model [97] in which operations are
only applied to leaves or subtrees. In particular, when anode is deleted, the entire
subtree rooted at the node is deleted. This captures the XML semantic better, for
instance removing a product from a catal og by del eting the corresponding subtree.
Important aspects presented in [69] include (i) management of positionsin XML
documents (e.g. the position of sibling nodes changes when some are deleted),
and (ii) consistency of the sequence of operations depending on their order (e.g. a
node can not be updated after one of its ancestors has been del eted).

Edit Cost Theedit cost of a sequence of edit operationsis defined by assigning
acost to each operation. Usually, thiscost is 1 per node touched (inserted, deleted,
updated or moved). If a subtree with n nodesis deleted (or inserted), for instance
using a single delete operation applied to the subtree root, then the edit cost for
this operation is n. Since most diff algorithms are based on this cost model, we
use it in this study. The edit distance between document A and document B is
defined by the minimal edit cost over al edit sequences transforming A in B. A
delta isminimal if its edit cost is no more than the edit distance between the two
documents.

One may want to consider different cost models. However, some cost mod-
elsimply atrivia solution of the diff problem. Consider for instance the case of
assigning cost = 1 for each edit operation, e.g. deleting or inserting an entire sub-
tree. When two documents are different, aminimal edit script would often consist

2see Document Object Model (DOM) for XML, http://www.w3.org/DOM/
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in the following pair of operations: (i) delete the first document with a single de-
lete operation applied to the document’sroot (ii) insert the second document with
asingleinsert operation.

We briefly mention in Section 5.6 some results based on a cost model where
the cost for insert , delete and update is 1 per node, whereas the cost for moving
an entire subtreeisonly 1 (see next).

The move operation The semantics of move is to identify nodes (or subtrees)
even when their context (e.g. ancestor nodes) has changed. Some of the proposed
algorithms are able to detect move operations between two documents, whereas
others do not. We recall that most formulations of the change detection problem
with move operations are NP-hard [126]. So the drawback of detecting moves
Is that the algorithms that can be used in practical time will only approximate
the minimum edit script. I1n [126], they consider the problem of comparing two
CUAL (Connected, Undirected, Acyclic and Labeled) graphs. By reduction from
exact cover by 3-sets, one can show that finding the distance between two graphs
is NP-hard. They extend this by proposing a constrained distance metric, called
the degree-2-distance, requiring that any node to be inserted (del eted) has no more
than 2 neighbor. In thisview, Selkow’s model corresponds to finding the degree-1
distance.

The improvement when using a move operation is that, in some applications,
users will consider that a move operation is more intuitive (or less costly) than a
delete and insert of the subtree. It often corresponds to redlity, e.g. in a storage
file-system, moving adirectory of filesis cheaper than copying (and then deleting)
them, and also cheaper than moving each file one-by-one.

In tempora databases, move operations are important to detect from a se-
mantic viewpoint because they allow to identify (i.e. trace) nodes through time
better than delete and insert operations.

Mapping/Matching In the next sections, we will also use the notion of “map-
ping” between the two trees. Each node in A (or B) that is not deleted (or in-
serted) is “matched” to the corresponding nodein B (or A). A mapping between
two documents represents all matchings between nodes from the first and second
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documents. In some cases, adelta issaid “minimal” if its edit cost is minimal for
the restriction of editing sequences compatible with a given “mapping” 3.

The definition of the mapping and the creation of a corresponding edit se-
guence are part of the “change detection”. The “change representation” consists
in a data model for representing the edit sequence.

5.3 Change Representation models

XML has been widely adopted both in academia and in industry to store and ex-
change data. [26] underlines the necessity for querying semistructured temporal
data. Recent works[26, 63, 29, 69] study version management and temporal quer-
ies over XML documents. Although an important aspect of version management
isthe representation of changes, a standard is still missing.

In this section we recall the issues in change representation for XML
documents, and we present the main recent proposals on the topic, namely
DeltaXML [63], XDL [76], XUpdate [114] and XyDelta [69]. Then we give a
summary of the different formats, their features and equival ences between them.
Finally, we present some experiments conducted over Web data.

As previously mentioned, the main motivations for representing changes are:
version management, temporal databases and monitoring data. Here, we ana-
lyze these applicationsin terms of (i) versions storage strategies and (ii) querying
changes.

Versions Storage Strategies In [28], a comparative study of version man-
agement schemes for XML documents is conducted. For instance, two simple
strategies are as follow : (i) storing only the latest version of the document and
all the deltas for previous versions (ii) storing al versions of the documents, and
computing deltas only when necessary. When only deltas are stored, their size
(and edit cost) must be reduced. For instance, the deltaisin some caseslarger than
the versioned document. We have analyzed the performance for reconstructing a
document’s version based on the delta. The time complexity isin all cases linear
in the edit cost of the delta. The computation cost for such programs is close to
the cost of manipulating the XML structure (reading, parsing and writing).

3A sequence based on another mapping between nodes may have alower edit cost
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One may want to consider aflat text representation of changes that can be ob-
tained for instance with the Unix diff tools. In most applications, it is efficient in
terms of storage space and performance to reconstruct the documents. Its draw-
back are: (i) that it is not XML and can not be used for queries (ii) files must
be serialized into flat text and this can not be used in native (or relational) XML
repositories.

Querying Changes Werecall here that support for both indexing and persistent
identification is useful. On one hand, labeling nodes with both their prefix and
postfix position in the tree alows to quickly compute ancestor/descendant tests
and thus significantly improves querying [8]. On the other hand, labeling nodes
with a persistent identifier accelerates temporal queries and reduces the cost of
updating an index. In principle, it would be nice to have one labeling scheme that
contains both structure and persistence information. However, [36] showsthat this
requires longer labels and uses more space.

Also note that using move operationsis often important to maintain persistent
identifiers since using delete and insert does not lead to a persistent identifica-
tion. Thus, the support of move operations improves the effectiveness of temporal
queries.

5.3.1 Change Representation models

We now present change representation models. On one hand, the XML delta
formats XUpdate [114] and XyDelta [69] describe the list of operationsthat trans-
form one document into another. In these deltas, the nodes of the source and
target documents are identified using XPath expressions (XUpdate) or XI1Ds (Xy-
Delta). On the other hand, the XML deltaformat DeltaXML [63] givesasummary
of the source document. This summary is enriched by adding specific elements
and attributes to describe the operations that transform it into the target document
(details below). XDL [76] can be used in these two different ways.

Our examples of deltas represent the changes that occurred between the two
versions of the document presented in Figures 5.1 and 5.2 (pages 84, 85). The
notion of XID and XDL Path is detailed below. Note also that the problem of
ignorable white spaces is a technical issue that sometimes becomes hard to desal
with. In this section, we ignore thisissue (without loss of generality) and we only
consider the “real” content of XML documents.
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| XID | XDL Path
<catalogs> | 15 | .
<product> | 7| /1
<name> | 2 | /1/1
Notebook | 1| /1/1/1
</name> | |
<descriptions> | 4 | /1/2
2200MHz Pentium4 | 3| /1/2/1
</descriptions> | |
<prices | 6 | /1/3
$1999 | 5 | /1/3/1
</price> | |
</product> | |
<product > | 14 | /2
<name> | 9 | /2/1
Digital Camera | 8 | /2/1/1
</name> | |
<descriptions> | 11 | /2/2
Fuji FinePix 2600Z | 10 | /2/2/1
</descriptions> | |
<status> | 13 | /2/3
Not Available | 12 | /2/3/1
</status> | |
</product> | |
</catalog> | |

(Note: XID and XDL-Path are node identifiers)

Figure 5.1: First version of a document

DeltaXML In [63] (or similarly in [26]), the delta information is stored in a
“summary” of the original document by adding “change” attributes. It is easy
to present and query changes on a single delta, but slightly more difficult to ag-
gregate deltas or issue temporal queries on several deltas. The delta has the same
look and feel as the original document, but it is not strictly validated by the doc-
ument’s DTD. The reason is that while most operations are described using at-
tributes (with a deltaxml namespace), a new type of tag is introduced to de-
scribe text nodes updates. More precisely, for obvious serialization/parsing reas-
ons, the old and new values of atext node cannot be put side by side, and the tags
<deltaxml:oldtext>and <deltaxml :newtext > areused to distinguish
them. A specific DTD is generated for each input document DTD.
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<catalog>
<product>
<names>Notebook</names
<description>2200MHz Pentiumé4</description>
<price>$1999</price>
</product>
<product>
<name>Digital Camera</name>
<description>Fuji FinePix 2600Z</description>
<price>$299</price>
</product >
</catalog>

Figure 5.2: Second version of the document

<catalog
xmlns:deltaxml="http://www.deltaxml.com/ns/well-formed-
delta-v1"
deltaxml:delta="WFmodify" >
<product deltaxml:delta="unchanged"/>
<product deltaxml:delta="WFmodify"s>
<name deltaxml:delta="unchanged"/>
<description deltaxml:delta="unchanged"/>
<deltaxml:exchange>
<deltaxml:olds>
<status deltaxml:delta="delete">Not Avail-
able</statuss>
</deltaxml:old>
<deltaxml :new>
<price deltaxml:delta="add">$299</price>
</deltaxml :new>
</deltaxml : exchange>
</product >
</catalog>

Figure 5.3: DeltaXML delta

There is some storage overhead when the change rate is low because: (i) posi-
tion management is achieved by storing the root of unchanged subtrees (ii) change
status is propagated to ancestor nodes. The delta correspondig to Figures 5.1
and 5.2 is presented in Figure 5.3.

Note that it is also possible to store the whole document, including unchanged
parts, along with changed data.
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XyDelta In[69], every node in the original XML document is given a unique
identifier, namely XID (see Figures 5.1 and 5.2), according to some identification
technique called XidMap. The XidMap gives the list of al persistent identifiers
in the XML document in the postfix order of nodes (i.e. descendant first). Then,
the delta represents the corresponding operations: identifiers that are not found in
the new (old) version of the document correspond to nodes that have been deleted
(inserted)®. The example in Figures 5.1 and 5.2 is as follows: nodes 12-13 (i.e.
from 12 to 13) that have been deleted are removed from the XidMap of the second
version, while new identifiers (e.g. 16-17) are assigned to inserted nodes. The
delta corresponding to Figures 5.1 and 5.2 is:

<xydelta

vl XidMap="(1-15)"

v2 XidMap="(1-11;16-17;14-15)">

<delete xid="(12-13)" parent="14" position="3">
<status>Not Available</statuss>

</deletes>

<insert xid="(16-17)" parent="14" position="3">
<price>$299</price>

</inserts>

</xydelta>

Asshown in Chapter 4, XyDeltas have nice mathematical properties, e.g. they
can be aggregated, inverted and stored without knowledge about the original doc-
ument. Also the persistent identifiers and move operations are useful in temporal
applications. The drawback is that a XyDelta does not contains contexts (e.g.
the content and value of ancestor nodes or siblings of nodes that changed) which
are sometimes necessary to understand the meaning of changes or present query
results to the users. Therefore, the context has to be obtained by processing the
document.

XUpdate [114] provides means to update XML data, but it misses a more pre-
cise framework for version management or to query changes. In the same spirit as
XyDelta, it describes the edit operations. The difference is that nodes are identi-
fyied by a path expression instead of their postfix position. While readability is

“Move and update operations are described in Chapter 4 (see [69]).

86



CHAPTER 5. A COMPARATIVE STUDY OF XML DIFF TOOLS

improved, the original document is still necessary to know the exact context of
operations. Since path expression can be very long, the size of the delta may be
larger than other formats. On the other hand, these path expressions allow to effi-
ciently monitor changes in specific parts of the document. Note also that it allows
the use of variables, but a more precise proposal is clearly needed for such an
advanced feature. Another drawback is that XUpdate does not support backward
deltas. The delta correspondig to Figures5.1 and 5.2 is:

<xupdate:modifications version="1.0"
xmlns:xupdate="http://www.xmldb.org/xupdate" >
<xupdate:insert-after select="/catalog[l]/product [2] /description[1]" >
<xupdate:element name="price">
$299
</xupdate:element>
</xupdate:insert-afters>
<xupdate:remove select="/catalogl[l] /product [2]/status[1]" />

</xupdate:modifications>

Microsoft XDL XML Diff Language (XDL) [76] is a proprietary XML -based
language for describing differences between two XML documents. An instance of
XDL iscalled the XDL diffgram. Thislanguage isthe most recent proposal. Inthe
spirit of XUpdate and XyDelta , XDL only describes the edit operations. However,
the “target” position of insert operations relies on the diffgram tree structure (in
the spirit of DeltaXML). More precisely, the position where a node is inserted is
given by the position of the corresponding operation in the diffgram?®.

On the other hand, the “source” nodes (e.g. deleted nodes) are identified us-
ing path descriptors. The path descriptor language is not XPath: the element
nodes name is not mentioned, only the node’s positions are listed. For instance,
. /2 refers to the second child of anode. This results on average in shorter path
descriptors than XPath. However, the drawback compared to XUpdate is that the
path descriptors are not sufficient to monitor changes (the document hasto be pro-
cessed). A node match command is also used to identify a node and declare it the
“root” of alocal context. For instance, the path descriptor:

<xd:delete match="/2/3" />

5In XUpdate or XyDelta, a node identifier is used to describe the target position
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may be replaced by

<xd:node match="2">
<xd:delete match="3" />

</xd:node>

Note that in this case, the identification of “source” nodes is similar to
DeltaXML, since the diffgram tree structure summarizes the tree structure of the
original document.

As in XyDelta, move operations are supported. They are described using an
additional operation descriptor that connect apair of insert and delete operations.
A copy operation is aso used to save space in some cases. XDL is validated
by a DTD. Again, a drawback is that backward deltas are not supported. Like
DeltaXML, the model Iacks more precise version management features (aggrega-
tion, persistent identifiers). A nice feature of XDL isthe use of a signature (hash
value) to identify the source document on which the diffgram can be applied. This
feature could easily be added to the other formats. The diffgram (delta) corres-
ponding to Figures5.1 and 5.2 is:

<xd:xmldiff
srcDocHash="...... "
xmlns:xd="http://schemas.microsoft.com/xmltools/2002/xmldiff" >
<xd:node match="1">
<xd:node match="2">
<xd:change match="3" name="price">
<xd:change match="1">$299
</xd:change>
</xd:change>
</xd:node>
</xd:node>
</xd:xmldiff>

An important difference with other change representation language is that the
insert and del ete operations are defined according to Tai’s model (see Section 5.2).
The set of operationsislarger than for other languages which use Selkow’s model,
where deleted and insert operations are only applied on leaves or subtrees. How-
ever, other languages can represent Tai’s operations as a composition of their own
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operations. For instance, Tai’s delete of anode n is replaced by deleting the entire
subtree rooted at n, and their inserting the child subtrees of » as children of the
parent of n. A drawback, in that case, is that the persistent identification of nodes
islost. With languages that support move operations, e.g. XyDelta, the persistent
identification of nodesis maintained.

Others Languages Dommitt [46] representation of changes is in the spirit of
DeltaXML. However, surprisingly, instead of using change attributes, new node
types are created. For instance, when abook node is deleted, a xm1DiffDe-
letebook nodeisused. A drawback isthat the delta (and its DTD) is signific-
antly different from the original documents (and their DTD).

5.3.2 Summary

During this study, we tested a few other change formats that are not mentioned
here. Some are comparable to those presented here, others turned out to be too
limited to really support the tree structure of XML. In the context of applications
that we mentioned previously, we summarize next the important aspects of the
change formats.

e Monitoring: DeltaXML and XUpdate make it easier to monitor changes
because the deltas contain the name and value of all ancestor nodes of nodes
that changed. Thus, processing of simple path queries on changing nodes
can be easily supported. Only DeltaXML proposes a method for having
both the changed and unchanged data in a single XML document. Thisis
important for any useswhere the unchanged datais needed al so, for instance
displaying changes to a user in the context of unchanged data.

e Tempora Queries. Only XyDelta manages explicitely the persistant iden-
tifiers. For other formats, the identifiers have to be infered by processing
the deltas and the source documents, which is costly. We believe that such
identifiers should be used to improve the efficiency of temporal queries. An
identification mecanism could be stored along with the documents asiit is
done currently in XyDelta, where an XidMap file is created for each docu-
ment.

e Storage: Experiments (see Section 5.3.3) show that XUpdate, XyDelta
and XDL save storage space when few changes occur on the document.
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The reason is that these formats only list change operations, whereas the
DeltaXML gives a summary of the full document. However, the storage
space is similar when a fair amount of changes occurs (e.g. 15 percent).

In al cases, validation by a DTD (or XMLSchema) is proposed or may be
obtained. It would be interesting to have deltas that are validated by the exact
same DTD as the document, but as mentioned previoudly, a difficulty is then to
describe the updates of text nodes (e.g. DeltaxML).

Anocther important aspect to consider is the formal equivalence (or not)
between the various change representations. We focus here on the core definitions
of the XML formats presented previously. For instance, we ignore advanced fea-
tures of XUpdate (e.g. the use of variables) since they are not clearly defined (and
we found no implementation or tools that use them). In this case, DeltaXML and
XUpdate are equivalent. XDL subsumes them. It adds information about “move”
operations defined as pair of insert and delete operations. XyDelta subsumes
XDL. It adds information to delete operations that can be used to apply the delta
backward.

However, all formats could be easily extended to support “move” operations as
well as“backward” deltas. In asimilar way, all formats could be easily extended
to support nice features such as XDL verification of the source document using a
hash value. Thus, one may want to consider all these formats as*“amost” equival-
ent. So, we believe that any one of them could serve as a basis of a standard for
representing XML changes.

5.3.3 Change Representation Experiments

In this section, we present experiments on the space usage of change representa
tions. Consider a given set of operations transforming one document into another.
Our experiments conducted over a few thousand files showed that the size of the
various XML formats is essentialy similar, up to a constant factor. This factor
(roughly 2) should not be considered important since it depends on the XML stor-
age architecture (serialized files, native XML or relational).

We noted that XDL deltas obtained using Microsoft Diff and Merge Tool [77]
are sometimes a bit smaller than others. In most cases, the reason is that the
change model is different, in particular it allows insert and delete operations ac-
cording to Tai’'s model (see Section 5.2).
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CHAPTER 5. A COMPARATIVE STUDY OF XML DIFF TOOLS

To illustrate our work, we compare in Figure 5.4 (page 91) the space usage
for the two main approches: list of operations vs. summary of the documents.
Figure 5.4 shows the size of a delta represented using DeltaXML or XyDelta as
function of the edit cost of the delta. The delta cost is defined according to the 1
per node” cost model presented in Section 5.2. Each dot represents the average®
deltafile sizefor deltaswith agiven edit cost. It confirmsclearly that DeltaXML is
larger for lower edit costs because it describes many unchanged elements. On the
other hand, when the edit cost becomes larger, its size is comparable to XyDelta.
The deltas in this figure are the results of more than twenty thousand XML diffs,
roughly twenty percent of the changing XML that we found on the web.
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Figure 5.4: Size of the deltafiles

5.4 Diff calculation

In this section, we present an overview of previous works in this domain. The
algorithms we describe are summarized in Figure 5.6 (page 101).

6Although fewer dots appear in the left part of the graph, they represent each the average over
several hundred measures.
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A diff algorithm consists in two parts: first it matches nodes between the two
(versions of the same) document(s). Second it generates a document, namely a
delta, representing a sequence of changes compatible with the matching.

The goal of our survey is to compare both the performance and the quality
of several XML diff tools. In the next sections, we present experiments on the
performance (see Section 5.5) and the quality (see Section 5.6) of thetools. In this
section, we compare the tools based on the formal description of their algorithms
(if available), and in particular we consider the upper-bound complexity and the
minimality of the delta results.

Following subsections are organized as follows. First, we introduce the String
Edit Problem. Then, we consider optimal tree pattern matching algorithms that
rely on the string edit problem to find the best matching. Finally we consider other
approaches that first find a “meaningful” mapping between the two documents,
and then generate a compatible delta.

5.4.1 Introduction: The String Edit Problem

Longest Common Subsequence (LCS) In astandard way, the diff tries to find
a minimum edit script between two strings. It is based on edit distances and the
string edit problem [11, 65, 40, 106]. Insertion and deletion correspond to in-
serting and deleting a (single) symbol in astring. A cost (e.g. 1) is assigned to
each operation. The string edit problem corresponds to finding an edit script of
minimum cost that transforms a string = into a string y. A solution is obtained by
considering the cost for transforming prefix substrings of = (up to thei-th symbol)
into prefix subtrings of y (up to the j-th symbol). On a matrix [1..|z|] = [1..]y|], a
directed acyclic graph (DAG) representing all operations and their edit cost is con-
structed. Each path ending on (4, j) represents an edit script to transform z[1..4|
into y[1..5]. The minimum edit cost cost(z[1..i] — y[1..j]) is then given by the
minimal cost of these three possibilities:

cost(deleteCharSymbol(z[i])) + cost(z[l..i — 1] — y[1..5])
cost(insertCharSymbol(ylj])) + cost(z[l..i] — y[l..j — 1])
cost(updateChar Symbol(z[i],y[j])) + cost(z[l..i — 1] — y[l..7 — 1])
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Notethat for examplethe cost for updateC har Symbol(z[i], y[j]) iszerowhen
the two symbols are identical. The edit distance between = and y is given by
cost(z[l..]z|]] — y[l..]y|]), and the minimum edit script by the corresponding
path.

The sequence of nodes that are not modified by the edit script (nodes on di-
agonal edges of the path) is a common subsequence of = and y. Thus, finding
the minimal delta is equivalant to finding the “Longest Common Subsequence”
(LCS) between = and y. Note that each node in the common subsequence defines
amatching pair between the two corresponding symbolsin z and .

The space and time complexity are O(|z| * |y|). This agorithm has been im-
proved by Masek and Paterson using the “four-russians’ technique[74] in O(|x| x
ly|/log|x]) and O(|z| x |y| * log(log|x]) /log|x|) worst-case running time for finite
and arbitrary alphabet sets respectively.

D-Band Algorithms In [81], E.W. Myers introduced a O(|x| x D) agorithm,
where D is the size of the minimum edit script. Such algorithms, namely D-
Band algorithms, consist in computing cost values only close to the diagonal of
the matrix. A diagonal k is defined by (7, j) couples with the same difference
i—j =k, eg. for k = 0 the diagonal contains (0,0), (1,1),(2,2),.... When
using the usual “1 per node” cost model, diagonal areas of the matrix (e.g. al
diagonalsfrom — K to K') contain all edit scripts of cost lower than a given value
K. Obvioudly, if avalid edit script of cost lower than K isfound to be minimum
inside the diagonal area, then it must be the minimum edit script. When & is zero,
the area consists solely in the diagonal starting at (0, 0). By increasing k, it isthen
possible to find the minimum edit script in O (max(|z| + |y|) * D) time. Using a
more precise anaysis of the number of deletions, [111] improvessignificantly this
algorithm performance when the two documents lengths differ substantially. This
D-Band technique is used by the famous GNU diff [47] program for text files.

5.4.2 Optimal Tree Pattern Matching

Serialized XML documents may be considered as strings, and thus we could use
a “string edit” algorithm to detect changes. This may be used as a raw storage
and raw version management, and can indeed be implemented using GNU diff
that only supports flat text files. However, in order to support better services, it is
preferable to consider specific algorithms for tree data that we describe next. The
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complexity we mention for each algorithm isrelative to the total number of nodes
in both documents. Note that the number of nodesis linear in the document’sfile
size.

Previous Tree Models Kuo-Chung Tai [99] gave adefinition of the edit distance
between ordered |abeled trees and the first non-exponential agorithm to compute
it. Considering two documents D1 and D2, the time and space complexity is
quasi-quadratic: O(|D1| * |D2| % d(D1)? % d(D2)?), where d(D1) and d(D2)
represent the depth of the two trees. Zhang and Shasha [123, 124] proposed an
algorithm with similar methods. The main differenceisthat it runsin a postorder
traversal of the tree (child nodes are visited first, instead of preorder where parent
nodes are visited first). The time complexity isO(|D1]| x |D2| x d(D1) % d(D2))
and the space complexity is O(|D1| x |D2|). This agorithm is used by Logilab
XML Diff and Microsoft XML Diff that we present next. In the same spirit is
Yang's[121] algorithm to find the syntactic differences between two programs.

In Selkow’svariant [97], whichiscloser to XML, the LCS a gorithm described
previously is used on trees in a recursive algorithm. Considering two documents
D1 and D2, the time complexity isO(|D1| x | D2]).

MMDiff and XMDiff In [22], S. Chawathe presents an external memory al-
gorithm XMDiff (based on a main memory version named MMDiff) for ordered
trees in the spirit of Selkow’s variant. Intuitively, the algorithm constructs a mat-
rix inthe spirit of the“string edit problem”, but some edges are removed to enforce
that deleting (resp. inserting) a node will delete (resp. insert) the subtree rooted
at thisnode. More precisely, (i) diagonal edges exist if and only if corresponding
nodes have the same depth in the tree (ii) horizontal (resp. vertical) edges from
(x,y) to (x + 1, y) exists unless the depth of node with prefix label « + 1 in D1
is lower than the depth of node y + 1 in D2. For MMDiff, the CPU and memory
costs are quadratic O(|D1| = | D2|). With XMDiff, memory usage is reduced but
IO costs become quadratic.

Unordered Trees In XML, we sometimes want to consider the tree as un-
ordered. The general problem becomes NP-hard [125], but by constraining the
possible mappings between the two documents, K. Zhang [122] proposed an
algorithm in quas quadratic time. In the same spirit is X-Diff [109] from the
project NiagaraCQ [27]. In these algorithms, for each pair of nodes from D1 and
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D2 (e.g. the root nodes), the distance between their respective subtrees is ob-
tained by finding the minimum-cost mapping for matching children (by reduction
to the minimum cost maximum flow problem [122, 109]). More precisdly, the
complexity iISO(|D1]| x| D2|x (deg(D1) + deg(D2)) x log(deg(D1) + deg(D?2)),
where deg(D) is the maximum outdegree (number of child nodes) of D. We
do not consider these algorithms since we did not experiment on unordered
XML trees. However, their characteristics are similar to MMDiff and both find a
minimum edit script in quadratic time.

DeltaXML DeltaXML [44] isone of the nicest products on the market. 1t uses
asimilar technigue based on longest common subsequence computations. It uses
Wu [111, 81] D-Band algorithm to run in quasi-linear time. We believe’ that the
complexity is O(|z| = D), where |z| is the total size of both documents, and D
the edit distance between them. The recent versions of DeltaXML support the
addition of keys (either in the DTD or as attributes) that can be used to enforce
correct matching (e.g. always match a person by its name attribute). DeltaXML
also supports unordered XML trees.

Because Wu's algorithm is applied at each level separately, the result is not
strictly minimal. Note that real-world experiments showed that the result isin
general (90 percent) strictly minimal. To understand the algorithm, we provide
here an example of non-minimal result that is obtained when diffing the following
documents:

First Document:

<top>
<a><b>text</b><b>text</b><b>text</b><b>text</b></a>
<a><b>text</b></a>

<a><b>text</b></a>

</top>

Second Document:

<top>

<a><bs>new text</b></a>

<a><b>updated text</b><b>text</b><b>text</b><b>text</b></a>
<a><b>updated text</b></a>

<a><b>updated text</b></a>

"The agorithm has not been published
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</top>

The a and b nodes are mapped by pair in the order they appear, thus resulting
in many operations (17 in total) to update their respective content. On the contrary,
the minimal editing script consistsin 6 operations.

Logilab XmIDiff In[67], Logilab proposesan Open Source XML diff. It offers
two different algorithms. For largefiles, it uses Fast Match Edit Script [25] (from
S. Chawathe and al.). As previoudly, this algorithm applies a LCS computation
(using Myer’s agorithm) at each level and for each label. Consequently, it runsin
O(lx|D1]| x e), but does not find the minimal edit script (note that { is the number
of node labels, and e the edit distance between the two documents).

The second algorithm is Zhang and Shasha tree-to-tree correction algorithm
(mentioned previoudy). It finds a minimal edit script considering insert and de-
lete operations according to Tai's model (see Section 5.2). More precisely, they
use an extended version of [123, 124] that has been proposed in [13]. This ver-
sion improve [123, 124] by adding a swap operation between a node and its next
sibling. The complexity of this algorithm is quasi-quadratic, but the performance
of the tool is slow®. Moreover, the implementation that we tested did not work
for alarge part of our test files. To represent changes, two options are supported:
(i) XUpdate [114] language (ii) an internal format. We do not study the internal
format sinceit is not XML based, and thus does not allow for further querying or
native storage.

Microsoft XmIDiff In the same spirit, Microsoft recently proposed an XML
Diff and Patch toolset [77]. It is free and the source code is freely available.
The deltaformat is Microsoft XDL. Thistool isin the spirit of XML treediff [56]
developed by IBM and that was based on [38] and [123, 124]. Two diff algorithms
are proposed. Thefirst one is a fast tree-walking algorithm (in the same spirit as
Fast Match). To be fast, they use a similar formula as XyDiff (see next) to limit
the number of nodes visited during the tree walk.

The second agorithm is an implementation of Zhang and Shasha al-
gorithm [123, 124]. As previously, note that the editing model considered
here is Tai’s model (see Section 5.2). Before any of the two algorithmsis used,
a preprocessing phase is applied to the documents, which consists in matching

8there may also be implementation issues
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identical subtrees (based on their hash signature) in the spirit of XyDiff (see next).
Matched nodes are then removed, and the algorithm choosen is then applied on
the pruned tree. This improves significantly the performance, in particular for
Zhang-Shasha algorithm. On the positive side, the result is that move operations
are supported (based on the preprocessing matched nodes). On the negative side,
the delta obtained is not minimal, as shown in the following example.

Source Document Target Document

|
|
<root> | <roots>
<a> | <a>
<x/> | <x2/>
<y/> | <x/>
</a> | <y2/>
<a> | <y/>
<x/> | </a>
<x2/> | <a>
<y/> | <x/>
<y2/> | <y/>
</a> | </a>
</root> | </roots>

Figure 5.5: Two versions of a document

Example Consider Figure 5.5 (page 97). The best choiceisto move x2 and y2.
However, when considering move operations, finding the minimum edit scriptisin
general NP-hard (see next). When move operations are ignored, some algorithms
(e.g. Zhang-Shasha or MMD:iff) find the minimum edit script. In this example, it
consistsin deleting x2 , y2 in the source document and then inserting x2, y2 in
the right place. Microsoft XmiIDiff uses such an algorithm, but due to the prelim-
inary pruning phase, the result is not minimal. More precisely, the two identical
subtrees (<a><x/><y/></a>) in both documents are matched during the prun-
ing phase, and as a consequence, a different edit script is found. It applies al
modifications on the second subtree, and requires an additional move operations
to swap the two subtrees. We consider in next section algorithms that support
move operations.
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5.4.3 Tree pattern matching with a move operation

The main reason why few diff algorithms supporting move operations have been
developed is that most formulations of the tree diff problem are NP-hard [126, 24]
(by reduction from the “exact cover by three-sets’). One may want to convert a
pair of delete and insert operations applied on asimilar subtree into asingle move
operation. But the result obtained is in general not minimal, unless the cost of
move operations is strictly identical to the total cost of deleting and inserting the
sutree.

LaDiff Recent work from S. Chawathe includes LaDiff [25, 24], designed for
hierarchically structured information. It introduces a matching criteriato compare
nodes, and the overall matching between both versions of the document is decided
onthisbase. A minimal edit script (according to the matching) isthen constructed.
Its cost isin O(n % e + e?) where n is the total number of leaf nodes, and e a
weighted edit distance between the two trees. Intuitively, its cost is linear in the
size of the documents, but quadratic in the number of changes between them. Note
that in terms of worst-case bounds, when the change rate islarge the cost becomes
quadratic in the size of the data. Since we do not have an XML implementation
of LaDiff, we could not include it in our experiments.

XyDiff has been presented in Chapter 3 and in [35]. Thistool is free and Open
Source. XyDiff is afast algorithm which supports move operations and XML fea-
tures like the DTD ID attributes. Intuitively, it matches large identical subtrees
found in both documents, and then propagates matchings. A first phase con-
sists in matching nodes according to the key attributes. Then it tries to match
the largest subtrees and considers smaller and smaller subtrees if matching fails.
When matching succeeds, parents and descendants of matched nodes are aso
matched as long as the mappings are unambiguous. E.g., an unambiguous case
is when two matched nodes have both a single child node with a given tag name.
During the tree walk, the number of nodes visited is limited according to the “im-
portance” (e.g. size) of the current subtree. This resultsin an upper bound (time
and space) for the algorithm that is proved [35] to be no more than O(n x log(n)),
where n isthe size of the documents (e.g. total size of files). This algorithm does
not, in general, find the minimum edit script.
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5.4.4 Other Tools

Sun aso released an XML specific tool named DiffMK [78] that computes the
difference between two XML documents. Thistool is based on the Unix standard
diff algorithm, and uses a list description of the XML nodes.

In the same spirit, DecisionSoft proposes an Open Source XML diff pro-
gram [43]. The program uses a linear representation of the XML document, i.e.
the XML document is printed as text, and each printed line is considered as a
node. Then, the Unix diff command is executed, and it finds which lines have
been inserted or deleted. Consider the following document, in which we delete
thefirst author subtree and the phone node in the second subtree:

<authors>
<names>Stefan Hellkvist</names
</author>
<authors>
<name>Magnus Ljung</name>
<phone/>

</authors>

The resulting deltais as follows:

<authors>
DELETE <names>Stefan Hellkvist</names
DELETE </author>
DELETE <authors>
<name>Magnus Ljung</name>
DELETE <phone/>
</author>

On the serialized (flat) file, no changes are missed. However, this example
shows that the tree structure of XML is not used. More precisely, we see that
two author subtrees are merged by the deletion of two lines: </author> and
<authors>. Indeed, the notion of deletinga < /author > line of text doesnot (in
general) translate well into XML or tree operations. We consider that thisresult is
not semantically “correct” in the context of our survey. These tools may be used
for storage compression but can not be used for querying changes. Moreover,
when we experimented with them, we found that the versions available at that
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time did not scale well to larger XML files. Thus, we did not include them in the
speed and quality comparison.

5.4.5 Summary of tested diff programs

As previsouly mentioned, the algorithms are summarized in Figure 5.6 (page 101).
The time cost given here (quadratic or linear) is a function of the data size, and
corresponds to the case when there are few changes (i.e. D << |z| + |y]).

For GNU diff, we do not consider minimality since it does not support XML
(or tree) editing operations. However, we mention in Section 5.6 some analysis of
theresult file size.

5.5 Experiments: Speed and Memory usage

As previously mentioned, our XML test data has been downloaded from the web.
Thefiles found on the web are on average small (afew kilobytes). To run testson
larger files, we used large XML files from DBLP [66] data source. We used two
versions of the DBLP source, downloaded at an interval of one year.

The measures were conducted on a Linux system. Some of the XML diff tools
are implemented in C++, whereas others are implemented in Java. Let us stress
that we ran tests that show that these algorithms compiled in Java (Just-In-Time
compiler) or C++ run on average at the same speed, in particular for largefiles.

For time reasons, we did not include Microsoft Xml Diff in Figure 5.7. Our ex-
perimentsindicate that the performance of their Tree-Walking algorithmissimilar
to XyDiff, and the performance of Zhang-Shasha algorithmis (on average) similar
to DeltaXML.

For space reasons, we didn’'t include Logilab Tree-Walking algorithm. It has
roughly the same speed than MMDiff. A reason isthat it uses a simple (and quad-
ratic) implementation of the LCS at each level.

Let us analyze the behaviour of the time function plotted in Figure 5.7
(page 102). It represents, for each diff program, the average computing time
depending on the input file size. On the one hand, XyDiff and DeltaXML are
quasi-linear, as well as GNU Diff. On the other hand, MMDiff increase rate
corresponds to a quadratic time complexity. When handling medium files (e.g.
hundred kilobytes), there are orders of magnitude between the running time of
linear vs. quadratic algorithms.
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For MMDiff, memory usage is the limiting factor since we used a 1Gb RAM
PC to runit onfiles up to hundred kilobytes. For larger files, the computation time
of XMDiff (the external-memory version of MMDiff) increases significantly when
disk accesses become more and more intensive.

In terms of implementation, GNU Diff is much faster than others because it
doesn’'t parse or handle XML. This should be linked to experiments on XyDiff that
showed that 90 percent of the timeis spent in the XML parser. This makes GNU
Diff very performant for simple text-based version management schemes.
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Figure 5.7: Speed of different programs

A more precise analysis of DeltaXML results is depicted in Figure 5.8
(page 103). Its shows that although the average computation time is linear, the
results for some documents are significantly different. Indeed, the computation
time isamost quadratic for some files. We found that it corresponds to the worst
case for D-Band agorithms: the edit distance D (i.e. the number of changes)
between the two documents is close to the number of nodes N. For instance, in
some documents, 40 percent of the nodes changed, whereas in other documents
less than 3 percent of the nodes changed. This may be a slight disadvantage for
applications with strict time requirements, e.g. computing the diff over a flow of
crawled documents as in NiagaraCQ [27] or Xyleme [84]. On the contrary, for
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MMDiff and XyDiff, the variance of computation time for al the documents is
small. This showsthat their average complexity isequal to the upper bound.
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Figure 5.8: Focus on DeltaXML speed measures

5.6 Quality of the result

The “quality” study in our benchmark consists in comparing the sequence of
changes generated by the different algorithms. We used the result of MMDiff and
XMDiff as a reference because these algorithms find the minimum edit script.
Thus, for each pair of documents, the quality for a diff tool (e.g. DeltaXML) is

defined by the ratio
C

Cres
where C' is the delta edit cost and C,..; is MMDiff delta’s edit cost for the same
pair of documents. A quality equals to one means that the result is minimum
and is considered “perfect”. When the ratio increases, the quality decreases. For
instance, aratio of 2 means that the delta is twice more costly than the minimum
delta. In our first experiments, we didn’t consider move operations. Thiswas done
by replacing for XyDiff each move operation by the corresponding pair of insert

r =
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and delete . In this case, the cost of moving a subtree is identical to the cost of
deleting and inserting it.

In Figure 5.9 (page 104), we present an histogram of the results, i.e. the num-
ber of documents in some range of quality. XMDiff and MMDiff do not appear
on the graph because they serve as reference, meaning that al documents have
a quality strictly equal to one. GNU Diff do not appear on the graph because
it doesn’'t construct XML (tree) edit sequences. The results of Microsoft Diff and
Logilab Diff do not appear on the graph because they use a different change model
(Tai’s operations).

These resultsin Figure 5.9 show that:

e (i) DeltaXML: For most of the documents, the quality of DeltaXML result

is perfect (strictly equal to 1). For the others, the delta is on average thirty
percent more costly than the minimum.

e (ii) XyDiff: Almost half of the deltas are less than twice more costly than
the minimum. The other half costs on average three times the minimum.
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@
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3
o
S 20000 | -
@]
&
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10000 | 1
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Quality of the Delta

Figure 5.9: Quality Histogram

Delta files size (without move) Intermsof file sizes, we also compared the dif-
ferent delta documents, as well as the flat text result of GNU Diff. The result diff
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filesfor DeltaXML, GNU Diff and XyDiff have on average the same size. Theres-
ult files for MMDiff are on average twice smaller (using a XyDelta representation
of changes). The result files of Microsoft Diff are also on average twice smaller.
The reason is often the use of Tai’s change model which results in shorter edit
scripts. Another reason is the support of move operations.

Using “move” We also conducted experiments by considering move operations
and assigning them the cost 1. Intuitively this means that move is considered
cheaper than deleting and inserting a subtree, e.g. moving files is cheaper than
copying them and deleting the original copy. Only XyDiff and Microsoft XmIDiff
detect move operations. On average, XyDiff performs better and becomes better
than the reference for fifteen percent of the documents, and in particular for large
files. The results of Microsoft Diff often contain move operations that improve
their accuracy: with limited human checking of the results we found that, for
large files, half of the edit scripts are smaller (about a half) than the reference.

Finally, note that this quality measure focuses on the minimality of results.
In some applications, the semantics of the results is more important. But the
semantic value can not be easily measured. An interesting aspect isthe support of
(semantic) matching rules by some programs (DeltaXML, XyDiff). Morework is
clearly needed in the direction of evaluating the semantic quality of results. We
also intend to conduct experiments on LaDiff [25] which is a good example of
criteria-based mapping and change detection.

5.7 Conclusion

In this Chapter, we described existing works on the topic of change detection in
XML documents.

We first presented recent proposals for representing changes, and compared
their features through analysis and experiments. We believe that more work is
needed to propose a framework for version management and querying changes
according to the proposed change languages. Persistant identifiers (as in Xy-
Delta) are an important aspect. As one should expect, languages focusing on
edit operations (e.g. XUpdate, XyDiff) are slightly more compact than |anguages
summarizing the document (e.g. DeltaXML, XDL). But the |atter are more easily
integrated in simple applications, such as monitoring. Important features should
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also be considered, like the support of move operations (e.g. XDL, XyDelta) or
backward deltas. At the cost of little improvements, the languages presented here
are close to be equivalent. 1t would be interesting to have a common standard.

The second part of our study concerns change detection a gorithms. We com-
pared two main approaches, the first one consists in computation of minimal edit
scripts, while the second approach relies on meaningfull mappings between docu-
ments. We underlined the need for semantical integration in the change detection
process. The study and experiments presented show (i) a significant quality ad-
vantage for minimal-based algorithms (MMDiff, DeltaXML and Microsoft Diff
(ZhangShasha)) (ii) a dramatic performance improvement with linear complexity
algorithms (GNU Diff, XyDiff, Microsoft TreeWalking, DeltaXML?).

On one hand, only MM Diff finds the exact minimal edit script, but it does not
scale to large files (e.g. 1Mb). Moreover, only Tree-Walking algorithms (GNU
Diff, XyDiff, Microsoft TreeWalking) always run in linear time, but the quality of
their resultsis lower. DeltaX ML runs on average in linear time, but the cost may
be quadratic for some files.

On the other hand, DeltaXML and Microsoft Zhang-Shasha offer good com-
promises to find high-quality deltas. Both run on average in quasi linear time,
although they may take longer for some large files. The main difference between
them is the change model used. The one used in DeltaXML may be better for
some XML documents, whereas the change model used in Microsoft Diff often
resultsin smaller deltas.

We also noted that flat text based version management (GNU Diff) still makes
sense with XML data for performance critical applications.

Although the problem of “diffing” XML (and its complexity) are better
and better understood, there is still room for improvement. In particular, diff
algorithms could take better advantage of semantic knowledge that we may have
on the documents or may have infered from their histories or their DTD.

%linear time on average, but significantly more for some files
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Chapter 6

Monitoring XML

Abstract In previous chapter, we presented state-of-the art tools for detecting
and representing changes in XML. This work is in the context of change-control for
semi-structured data. In this chapter, we focus on the "control’ part: we present al-
gorithms and tools for continuous queries on XML data that have been developed
in the context of the Xyleme project [117]. These tools have been transfered to the
industry [119].

This work has been conducted with the help of Benjamin Nguyen, Serge Abite-
boul and Mihai Preda. In particular, the subscription system has been presented
in [84] by Benjamin Nguyen. Benjamin Nguyen was in charge of the system’s
architecture, and implemented the first prototypes with the help of Jeremy Jouglet
and Mihai Preda. My contributions where the definition, design and implementa-
tion of the Alerters.

6.1 Introduction

Our system is a scalable architecture that enables the notification of users (or
applications) when specific events are detected. The important features of this
system are:

e Management of subscriptions by alarge number of users
e Acquisition of the XML datato be processed

e Processing of user queries on the data, with extensive sharing of redundant
computations among various subscriptions.
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e Preparing and sending notification reports to users (or applications) depend-
ing on their interests and their subscriptions

The Alerters are modules that process documents in order to detect specific
small-grain events, namely atomic events, such as the presence of a certain
keywords. The conjunction of such events leads to the trigger of notification
reports, namely complex events, as defined by the users.

The definition of the Alerters consistsin three important aspects:

¢ Defining the service. Thismeansdefining with kind of atomic eventswill be
detected. For each kind of events, for instance keywords detection, the alert-
ers will receive the different events registrations depending on users sub-
scriptions. For instance, a user subscription may contain different atomic
events and may lead to the registration of three different words:. inria, Xy-
leme and XML.

e The design and implementation of the algorithms that implement the event
detection of adata flow. The alerters will have to process hundred of docu-
ments per second.

e The definition of a scalable architecture in order to: (i) increase the pro-
cessing power and speed of alerters by adding more machines, (ii) main-
tain the whole detection chain up-to-date and consistent with concurrent
(un)subscriptions and a permanent data flow.

In the context of the Xyleme project, our goal wasto processHTML and XML
documents found on the Web.

Given the size of the Web, it was necessary to be able to process several mil-
lions of documents per day. Whereas the services that we provide are not new,
this context lead to very strict performance requirements that made it a challen-
ging problem. While we do not need to have strict real-time processing (i.e. with
very low latency), the average speed of the alerters has to match the crawling
speed. The word streaming is often used to describe this problem of processing
aflow of datain this context [96]. Intuitively, it means that the alerters have to
process the flow of data and not slow it down.

One aspect of the architecture is the extensive use of asynchronous commu-
nications in the system. For instance, the aerters receive documents in a asyn-
chronous way: documents are sent by burst transfers and no reply is needed. Ina
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similar way, the alerters send their alerts to the next module in the chain (the No-
tification Processor) in an asynchronous way: aerts are sent using burst transfers
and no reply is expected. The synchronous transfers enable a large gain on net-
work bandwidth since raw bandwidth is not a limiting factor, while network calls
latency may be alimiting factor. Also it impliesthat amodule does not slow down
the other modules as long as its average speed for handling documents matches
the average speed of itsinput.

We present briefly in this chapter the two algorithms that we implemented
and that represent the main aspects of events detection in our system. Namely,
we present an algorithm to detect keywords (and keywords sequences) and an a-
gorithm to detect simple path expressions (in the spirit of X Path). We al so present
abrief state-of-the art on the topic of processing XPath queries.

Finally, we mention areal-worlds application of the system: the Copy Tracker
that has been developed by Mihai Preda using the notification system. Thisisa
critical use-case of our system sinceit istargeted to the final customers.

6.2 Alerts on keywords

Detecting keywords on pages is a basic feature of any notification system. How-
ever, the problem becomes more complex when considering millions of users (i.e.
millions of keywords), and a few hundred documents per second.

For engineering reasons, and given the experiments for the URL plug-in, we
decided to a so use an hash table to implement this plug-in. Thelook-up of agiven
word consists ssmply in alook-up in the hash table. The document is read, and
each word is processed in the order they appear. Note that for aword that appears
several times in the document, a look-up in the hash table is computed as many
times.

The Sequence Problem Aninteresting point was the detection of keywords se-
quence. Consider for instance, Air France. A possibility to implement the
detection is as follows. As described in [84], our system detects conjunctions of
events. Thus, it can detect that a page contains the two words Air and France.
It is possible, using some post-processing to detect among those pages that con-
tain the two words which of them contain the word sequence Air France.
However, the performance and complexity study conducted by Benjamin Nguyen
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in [84, 83] seemed to indicate that this was not an optimal choice as it would
increase the number of detected events, which increases dramatically the cost of
finding the corresponding subscriptions.

The Sequence Algorithm We devel oped a specific algorithm for detecting word
sequences. More precisely, we consider the detection of a sequence of consecutive
words Wy, W, ws, ...w,, in the document. We implemented it as follows:

e aWordsMemory structure records the n,,,. latest words of the document.
Nmae 1S typicaly from 5 to 100.

e The words sequence as registered in the hash table as one large word, in-
cluding space characters. For instance "Air France".

Then, when the document is read, each possible subsequence (with length up
tO n.,42) 1S tested against the hash table. This results in s * n,,,, 100k-ups in
the hash table, where s is the number of words in the document, and n,,,, the
maximum number of words allowed for each sequence.

When n,,.. grows, it becomesinefficient to test all sequences up to that length.
We introduced an optimization as follows:

1. For each subscription wy, ..., w,, the subsequence wy, ..., w;, where j < n
are marked “interesting”. They are added to the hash table (associated with
anull event).

2. Consider that aword w is read from the document. A look-up for w in the
hash table is processed. This mean that we look-up for an event corres-
ponding to the sequence of length : wherei = 1, ending at word w. If some
event (even anull event) isfound, we increase ¢ and we loop. Thisis done
until 2 = n,,,, or until no event isfound for some value j of the length of
the sequence. Then, we continue processing the document by reading next
word w'.

For instance, consider the sequence . . .avion Air France... inthe
document. We look-up for avion in the hash table. No event is found. We read
the next word. We look-up for Air in the hash table. No event is found. We read
the next word. We look-up for France in the hash table. A null event is found.
We look-up for Air France. The corresponding event isfound (and not null).
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We note it. We look-up for avion Air France. No eventisfound. We read
the next word.

Thus, the worst-case upper bound remainsidentical interm of s and n,,,,, but
the average computation timeis greatly reduced.

Remark Note that the management of deletions of subscriptions requires to
have a usage counter for each string in the hash table. Interesting, the structure
that isthen represented in the hash table is somehow similar to adictionary (where
node granularity is an entire word), of the reversed sequences that have been sub-
scribed. We will see next that this can be compared to some XPath filtering al-
gorithm which consistsin reversing path expressions.

6.3 An application: the Copy-Tracker

In this section, we briefly describe a typical application that uses the Alerters.
This application is named Copy Tracker, and has been developed by Mihai Preda,
from [119].

The context of the application was to detect illegal copies of News wires on
the Internet. The goal of our system was, given aNews wire, to retrieve all copies
of that wire found on the Internet. To do so, we use the Xyleme Crawler to read
pages from the Web, and the Alerter to detect events on these pages. The Copy-
Tracker consistsin finding for each news wire the specific events that can be used
to detect the copies on the Web. Thisis done by finding asignature for each news
wire. The signature consistsin a set of words that (we believe) are specific to that
particular text. The alerters are used to detect all pages on the Web containing
these words, i.e. matching the signature.

The copy-tracker application process consistsin two steps.

The first step consistsin finding the signature of the document. The signature
is a set of discriminant words in the News wire. These are typically infrequent
words that are frequently used in that precise document. More precisely, for each
word we compute a score that is the ratio between its frequency of use in the
document versusits frequency on the Web.

_ fdocument

fWeb
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We select the n words with highest ratio. n istypically 4 to 7. When n isto low,
many Web pages may be detected that are not the expected News wire. On the
other hand, when n is too high, some versions of the News wire that have been
dlightly modified may not be detected. The frequency of words on the Web, fy .,
isitself computed using the Alerters. This was done once during a limited time-
frame experiment. We registered each word from the dictionary (to avoid spelling
mistakes), and for each word, the alerters reported each time a document appears
which containsit.

The second step consists in finding on the Web all documents that match this
signature. To do so, we register a continuous query, to the subscription system,
that reports all documents which contain all selected words. Then, this query is
evaluated on documents that are loaded from the Web. An important issue in that
system, that we do not consider here, is that news pages change frequently on the
Web. Thus, the crawling strategy must be very efficient to rapidly discover new
news pages and crawl them before they change or disappear. Thisisconsidered in
Chapters 7 and Chapter 8.

This application shows a typical usage of the Alerters to detect rapidly specific
documents on the Internet. It is a real-world industrial applications, that targets
directly the final customer.

6.4 XML Alerts

In this section, we present an algorithm that we implemented to detect specific
path expressions in XML documents. There is abundant work in that area, and
more precisely on the topic of processing XPath queries.

First, we present briefly what isa path expression as proposed by X Path. Then,
we present the state of the art for processing XPath expressions. Finaly, we
present our algorithm.

6.4.1 A brief introduction to XPath

Consider an XML document. A simple path expression is a sequence of des-
cending axes (e.g. child-of or descendant-of) that is used to retrieve nodes in the
document. For instance, consider the expression:

/catalog/product//price
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It starts on the document’s root node, that should be named <catalogs.
If not, the result is empty. Then, it takes all child nodes of <catalogs> that
are named <product>, and for each of them, retrieves al the nodes named
<price> intheir subtree (i.e. descendant nodes).

In that spirit, XPath [116] is alanguage for addressing parts of an XML doc-
uments. An XPath expression starts from a node that is named the context node.
It retrieves alist of nodes, each of them matching the path expression. By default,
the context node is the root of the document. If the context isalist of nodes, the
XPath is applied to each context node, and the results are merged. Detailsomitted.

XPath does significantly more than simple path expression in several ways:

e Italowsnot only descendant axes(e.g. child-of(noted /), or descendant -
of (noted //), or next-sibling), but also ascending axes, such as

parent, ascendant-of of previous-sibling.

A typical exampleis:
//price/parent: :cd/parent: :product

It retrieves all parent nodes of product nodes.

e It allows the evaluation of filtering, such as name="computer", includ-
ing afull algebra on numbers and strings. Aswe will see later, this algebra
(including string concatenation) and tests are sufficient to make X Path eval-
uation very costly in time and space. A typical exampleis:

//product/cd[price<9.99]

It retrieves all product nodes which have a price child. Then, the text
node below the price is compared with 99, and only the node giving true
results are kept.

e It allows to “join” several XPath expressions. The join is based on node
identity and represented by [1. For instance consider p1 [P2] /P3. The
expression P1 retrievesa set of context nodes. The expression P2 isapplied
on each of them. Only the nodes for which the result is non-empty are kept.
Then, P3 is applied on the remaining nodes. Following example retrieves,
among all products, the name of those whose priceis lower than 99.

113



6.4. XML ALERTS

//product/cd[price<9.99] /name

Inthat case, Plis //product/cd,P2isprice<"99",and P3isname.

The formal definition of XPath gives a way to evaluate XPath expressions.
However, we see next that real-world implementations of XPath should use other
algorithms.

6.4.2 Processing XPath queries: state of the art

Algorithmsfor processing of XPath queries should be considered in two categor-
ies. (i) the regular ones, evaluating the query using knowledge about the entire
document (typically a DOM model), and (ii) streaming XML, i.e. evaluation
guery with asingle pass on the XML document, and limited memory usage (typ-
icaly a pushdown stack).

DOM Model Recent work on that topic is presented in [51]. First, they show
through experiments that the current implementations of XPath in XALAN [112],
XT [33] and Microsoft Internet Explorer 6 have an exponentia cost (in the length
of the query), even for very simple documents and queries. [51] proposed a poly-
nomial algorithm for evaluating full XPath, and alinear time agorithmfor a subset
of XPath. Intuitively, this subset of XPath contains all XPath axes, but no arith-
metical or string operations. The linear time algorithm runsin O(N * D) where
N isthe size of the query and D the size of the data. In [52], the polynomial
algorithmisimproved, and a practically relevant fragment of XPath is defined for
which afurther form of query evaluation is possible. The main drawback of these
algorithms is that they rely on aDOM model, i.e. the document has to be loaded
in memory 1.

Streaming XML It is also very common to consider some algorithms and ap-
plicationsin the context of streaming XML. Streaming XML typically relieson the
SAX parser model [93]. It assumes that the document is traversed once. While
some streaming algorithms use no memory at al, most algorithms use a push-
down stack [96]. In [53], a streaming version of an X Path algorithm is proposed.
It has been implemented has part of the XML-TK [115] project. It consider the
descendant paths, and does not consider string (and numerical) algebra. It also

LAnother possibility isto use a Persistent DOM implementation and navigate on disk
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does not consider joins. The main ideais that path expressions can be processed
using a Non-Deterministic State Automata (with no stack). Their algorithms con-
structs lazily the corresponding deterministic state automata on the fly, while the
XML document is processed. The construction is lazy in that it only constructs
the parts of the automata that are reached while reading the document. While the
deterministic automata sizeis exponential in the worst-case (i.e. to handleall pos-
sible documents), the automata size remains linear (bounded by the data guide)
when a single document is processed. Thus, the worst-case cost for processing
asingle document isin O(N x D), where N is the size of the query, and D the
size of the data. Moreover, it is possible to process several queries at a time by
composition of their automata. In that case, the computing cost is no more than
O(D %32, Ny).

Ascending Axes Aswe have seen, several algorithms consider only descending
axes of XPath, for instance child, nextSibling and not parent, previousSibling.
However, [86] proves that this can be done without loss of generality. Indeed,
they proposed two agorithms that transform path expression (without joins) into
descending only path expressions. A first algorithm runs in exponential time (in
the length of the path) and transforms a path expression into a descending path
expression, with no joins. To do so, there is a restriction on the ascending axes
of the first path expression, i.e. they can not use ancestor axes but only parent.
A second agorithm runsin linear time and constructs a path expression, with as
many joins as ascending axes in the source.

Filtering XML In[21], an index structure is proposed that is used to process
XPath expressions in a streaming fashion. Their work relies on decomposing tree
patterns into collections of substrings (i.e. simple path expressions), and indexing
them. A closely related work is XFilter [10].

6.4.3 Our algorithm for processing simple path expressions

Our work is aso in the spirit of XFilter [10]. The main difference with XPath
is that we do not return the set of nodes that match the path expression. Given
an XML document, and a set of path queries, we only return alist of those path
expression that have had a non-empty result for that document. Other restrictions
to XPath are:
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(i) we only consider descending axes,
(if) we do not consider an algebra for processing numbers and strings,

(iii) wedo not allow the presence of several branches (denoted by [] in XPath),
that lead to computing joins.

Intuition Our agorithm works by reversing the path expressions. Then, the
document is read in a streaming fashion, and nodes are processed in a postfix
order. For instance, a hode is processed when its closing XML tag is read, and
not when its opening tag is read. Thus, the parent and ancestors of a node are
processed after each node. By checking ancestor nodes against the reversed path
expressions, we can detect the corresponding events. A detailed description is
given below:

Description of the algorithm Consider a path expression P, composed of a se-
guence of element namesey, ..., e,,. The document isread in a streaming fashion,
in postfix order, i.e. child nodes are aways processed first. Let [ be the level of a
node, i.e. the node’s depth starting from the root of the document. We maintain
an array that stores, for each possible level, a set of element’s position in the path
expression. These positions start from the right of the path expression, i.e. the
path expression is considered in reversed order. They correspond to the parts of
the path expression that have already been detected (the right part), and point to
the part that has to be detected (the left part). For instance, at the beginning, all
lists contain asingle pointer to e,,. If an element of type e,, isfound at some node
n, then, apointer toe,, ; isadded to list corresponding to the previouslevel [ — 1.
Again, note that the algorithm rely on the postfix order of nodes, e.g. the parent
node of n will be read after n was read. Thisis done until ¢, is detected, which
impliesthat the path expression has a non-empty result to that document.

We handle differently the two operators / and //. For a path denoted by
...[allb, once b has been detected, a should be tested against all ancestor nodes.
First, a pointer to « is stored at the level corresponding to the parent node p of b.
When node p isread, we check if p isan element node of name a. If so, the rest of
the path expression is stored at his parent level, and so on. If not, the same pointer
to o is stored at the parent level. If the path expression was .../a/b, and the test
failed, then the pointer to a is thrown away.
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An important aspect to noteisthat all elementsof path expressionsare indexed
in ashared hash table, in order to retrieve at little cost matching path expressions.

From there, it is easy to extend the algorithm to work on several path expres-
sion while reading the document only once. The precise algorithm is given in
Figure 6.1

Complexity Analysis Let D be the number of nodes in the document. For each
node, we have to find all path expressions ending with that node. The cost is
constant since this is a look-up to a hash table. Then, we have to test the node
again all path expression pointers stored at the current stack level, and possibly
move them to the parent level. In the worst case, thereis at each level of the stack,
a pointer to each position of each registered path expression. Thus, the worst-case
costisinO(D xdx* ), N,), where D is the size of the document, d the depth of
the document, and NV, the length of each query q.

Experiments The algorithm has been implemented as part of the Xyleme pro-
ject [117], and is now used in a production system in Xyleme [119]. Thus, it has
been tested against millions of XML documents |loaded from the Web.

6.5 Conclusion

We have developed an algorithm for processing simple XPath queries that is
tailored to the needs of the Xyleme system and runs in quasi linear time.

Next, we plan to improve our algorithm as follows. The possibility to support
the XPath operator [] (i.e. joins based on nodes identities) may be added at the
subscription level where several atomic events are joined. However, to do so, it
would be necessary to do joins based on node identity, and thusit is necessary to
modify our algorithm so that it return the list of nodes matching the various path
expressions. When thisis done, according to Olteanu and a. work [86], we could
support descending axes (i) using a preprocessing phase for path queries.

In the context of Active XML [1], we have aso conducted research on the
topic of query evaluation on distributed and replicated data[2]. Thiswork is not
detailed here.

More experiments are also needed.
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o\°

Input:
Document D,
(all nodes <n> in postfix order)
A Set of path Expressions Pl, ..., Pg

o\°

o\°

o\° o\°

o\°

Output:
Set of path expressions al....ak
where a i is in (P1l...Pq)

o\° o\°

o\°

Stack s ;
ReturnResult r;

for each node <N»>

)

% in postfix order
let 1 be the level of N

find all path expressions ending with N
add them to s, at level (1-1)

for each element <e> of s at level (1)

if N is equal to e
if <e> is the first element
of path expression P
then add P to r
else add previous element of e
to s at level (1-1)

else
if the operator is "e/"
then forget e
if the operator is "e//"
then move e to g at level (1-1)

endif
end for
end for

Figure 6.1: Streaming Computation of Simple Path Expressions
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Introduction

In the first part of this thesis, our focus was change-control at the microscopic
scale, and in particular changesinside XML documents. We presented algorithms
and systems to analyze the elements and components of semi-structured data, as
well as detecting and representing changes.

In this part, our focus will be changes at the macroscopic scale. More pre-
cisely, we are interested in finding and managing data and documents of interest
from the web. The goal is to set-up foundations for systems that manage histor-
ical data, found anywhere on the web, possibly in the context of some specific
application.

We will in particular see the notion of page importance, namely PageRank,
that is an essential aspect towards efficient approaches for data discovery on the
Internet.

In Chapter 7, we propose anew agorithm that computes online the importance
of web pages. In Chapter 8, we present our work in the context of an interesting
application: the archiving of the web by national libraries, and more precisely the
archiving of the French web by the French national library (BnF).
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Chapter 7

On-line Computation of page
Importance

Abstract The computation of page importance in a huge dynamic graph has
recently attracted a lot of attention because of the web. Page importance, or page
rank is defined as the fixpoint of a matrix equation. Previous algorithms compute
it off-line and require the use of a lot of extra CPU as well as disk resources (e.g.
to store, maintain and read the link matrix). We introduce a new algorithm OPIC
that works on-line, and uses much less resources. In particular, it does not require
storing the link matrix. It is on-line in that it continuously refines its estimate
of page importance while the web/graph is visited. Thus it can be used to focus
crawling to the most interesting pages. We prove the correctness of OPIC. We
present Adaptive OPIC that also works on-line but adapts dynamically to changes
of the web. A variant of this algorithm is now used by Xyleme.

We report on experiments with synthetic data. In particular, we study the
convergence and adaptiveness of the algorithms for various scheduling strategies
for the pages to visit. We also report on experiments based on crawls of significant
portions of the web.

This work has been published in [7], and an extended abstract has been pub-
lished in [5]. It has been conducted with Serge Abiteboul and Mihai Preda. In
particular, the original idea of such an agorithm is from Mihai, as well as the
implementation and experiments on alarge scale web Crawler. Serge helped him
“fix” the algorithm (make it compute the correct PageRank) and proved the cor-
rectness. My contributions are as follows:

¢ Although not leading, | participated in the early works on the algorithm
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| participated in the proof of correctness of the algorithm and in tuning it

| implemented the algorithms and conducted the experiments on synthetic
data

| conducted the research on dynamic graphs (model and experiments)

Together with Luc Segoufin, we further formalized the PageRank computa-
tion over the graph of the web, and explained issues related to a-periodicity
and strong connectivity of the graph.

7.1 Introduction

An automated web agent visits the web, retrieving pages to perform some pro-
cessing such as indexing, archiving, site checking, etc., [9, 49, 94]. The robot
uses page links in the retrieved pages to discover new pages. Observe that all
pages on the web do not have the same importance. For example, Le Louvre
homepage is more important that an unknown person’s homepage. Page import-
anceinformationisvery valuable. It isused by search enginesto display resultsin
the order of page importance [49]. It is also useful for guiding the refreshing and
discovery of pages: important pages should be refreshed more often! and when
crawling for new pages, important pages have to be fetched first [31]. Following
someideas of [62], Page and Brin proposed a nhotion of page importance based on
the link structure of the web [16]. This was then used by Google with a remark-
able success. Intuitively, a page is important if there are many important pages
pointing to it. This corresponds, for instance, to the intuition of importance for
research articles: apaper isimportant if it isreferenced by many other (important)
papers. Thisleadsto afixpoint computation by repeatedly multiplying the matrix
of links between pages with the vector of the current estimate of page importance
until the estimate is stable, i.e., until afixpoint is reached.

The mainissuein this context is the size of the web, billions of pages[15, 92].
Techniques have been developed to compute page importance efficiently, e.g.,
[55]. The web is crawled and the link matrix computed and stored. A version
of the matrix is then frozen and one separate process computes off-line page im-
portance, which may take hours or days for a very large graph. So, the core of
the technology for the off-line algorithms is fast sparse matrix multiplication (in

1Google [49] seems to use such a strategy for refreshing pages; Xyleme [119] does.
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particular by extensive use of paralelism). Thisis a classical area, e.g., [100].
The algorithm we propose computes the importance of pages on-line, with lim-
ited resources, while crawling the web. It can be used to focus crawling to the
most interesting pages.

The algorithm works as follows. Intuitively speaking, some “cash” isinitially
distributed to each page and each page when it is crawled distributes its current
cash equally to all pages it pointsto. This fact is recorded in the history of the
page. The importance of a page is then obtained from the “credit history” of the
page. The intuition is that the flow of cash through a page is proportional to its
importance. It isessential to note that the importance we compute does not assume
anything about the selection of pagesto visit. If apage “waits’ for awhile before
being visited, it accumulates cash and has more to distribute at the next visit. In
Sections 7.2 and 7.3, we present aformal model and we prove the correctness of
the algorithm.

In practice, the situation is more complex. Consider the ranking of query res-
ults. First, the ranking of result pages by a search engine should be based on
factors other than page importance. One may use criteria such as the occurrences
of words from the query and their positions. These are typically criteriafrom in-
formation retrieval [101] that have been used extensively since the first generation
of search engines, eg. [9]. One may aso want to bias the ranking of answers
based on the interest of users [88, 20]. Such interesting aspects are ignored here.
On the other hand, we focus on another critical aspect of page importance, the
variations of importance when the web changes.

The web changes all the time. With the off-line algorithm, we need to restart a
computation. Although techniques can be used to take into account previous com-
putations, several costly iterations over the entire graph have to be performed by
the off-line algorithm. We show how to modify the on-line algorithm to adapt to
changes. Intuitively, thisis achieved by taking into account only a recent window
of the history.

Severa variants of the adaptive on-line agorithm are presented. An imple-
mentation of one of them is actually used by the Xyleme crawlers [118, 119].
It runs on acluster of PCs. The algorithms are described using web terminology.
However, the techniqueis applicablein alarger setting to any graph. Furthermore,
we believe that versions of the on-line algorithm running in a distributed environ-
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ment could be useful in network applications when a link matrix is distributed
between various sites.

Now consider the issue of archiving the web. In Section 7.6.3, we mention
studies that we conducted with librarians from the French national Library to de-
cideif page importance (PageRank) can be used to detect web sitesthat should be
archived. In Chapter 8, we discuss other criteria of importance, such as site-based
importance.

The chapter is organized as follows. We first present the model and in par-
ticular, recall the definition of importance. In Section 7.3, we introduce the al-
gorithm focusing on static graphs. In Section 7.4, we consider different crawling
strategies. In Section 7.5, we move to dynamic graphs, i.e., graphs that are con-
tinuously updated like the web. The following section deals with implementation
and discusses some experiments. The last section isaconclusion.

7.2 Model

In this section, we present the formal model. Reading this section isnot mandatory
for the comprehension of the rest of the chapter.

The web as a graph  We view the World Wide Web as a directed graph G. The
web pages are the vertices. A link from one page to another form a directed edge.

We say that a directed graph G is connected if, when directed edges are
transformed into non-directed edges, the resulting graph is connected in the usual
sense. A directed graph G is said to be strongly connected if for all pair of
vertices 7, j there exists a directed path going from i to j following the directed
edgesof GG. A graphissaid to be aperiodic if there existsa k such that for al pair
of vertices i, j there exists a directed path of length exactly £ going from i to j
following the directed edges of G. Thus aperiodicity implies strong connectivity.

When the web graph is not connected, each connected components may be
considered separately.

A graph as a matrix Let G be any directed graph with n vertices. Fix an arbit-
rary ordering between the vertices. G can be represented as amatrix L[1..n,1..n]
such that:

e L isnonnegative, i.e. Vi, Vj, L[i, j| > 0
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e L[i,j| > 0if and only if thereis an edge from vertex i to vertex ;.

There are several natural ways to encode a graph as a matrix, depending on
what property is needed afterwards. For instance, Google [16, 88] defines the out-
degree d[i] of a page as the number of outgoing links, and set L[i, j| = 1/d[i] if
thereisalink fromi to j. In[62], Kleinberg proposesto set K[i, j] = 1 if thereis
alink fromi to j, butthensets L = K7 x K (where KT isthe transpose of matrix
K).

Importance The basicideaisto define the importance of a page in an inductive
way and then compute it using a fixpoint. If the graph contains n nodes, the
importance is represented as a vector Z in an dimensional space. We consider
three examples, in which the importance is defined inductively by the equation

Tpy1 = Ly

¢ If one decides that a page is important if it is pointed by important pages.
Then set L[i, j] = 1 iff thereis an edge between i and j.

e A “random wak” means that we browse the web by following onelink at a
time, and all outgoing links of a page have equal probability to be chosen.
If one decides that a page importance is the probability to read it during
a “random walk” on the web, then set L[i, j] = 1/d[i] iff there is a edge
between ¢ and ;. The random walk probabilities correspond to the Markov
chain with generator L. This definition of L will result in the definition of
importance as in Google PageRank.

¢ If one decidesthat a page isimportant if it is pointed by important pages or
points to important pages. Then set L[i, j| = 1 iff there is an edge between
¢ and j or an edge between 5 and i. Thisisrelated to the work of Kleinberg.

In all cases, thisleads to solving by induction an equation of thetype z = Lz
where L is a nonnegative matrix. This suggests iterating over xy, 511 = L.
Unfortunately, for obvious modulus reasons, this is very likely to diverge or to
convergeto zero. Observethat we are only interested in the relative importance of
pages, not their absolute importance. This means that only the direction of z, is
relevant, not its norm. Thusit is more reasonable to consider the following induc-
tion (equivaent for importance computation), which uses the previous induction
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step but renormalizes after each step:

_ Ly,
Tpp) =m0
T Ly ||

Computing the importance of the pages thus corresponds to finding a fixpoint
7 to (1), each i™* coordinate of = being the importance of page i. By definition,
such a fixpoint is an eigenvector of L with area positive eigenvalue. If 7, isa
linear combination of all eigenvector having a real positive eigenvalue then it is
easy to seethat (1) will converge to the eigenspace corresponding to the dominant
eigenvalue (i.e. which is maximal). Thus, unless z, is not general enough (e.g.
not zero), the importance corresponds to an eigenvector of L which eigenvalueis
apositive real and which modulusis maximal among all other eigenval ues.

For each nonnegative matrix L, there always exists such an eigenvector (see
Perron-Frobenius theorem 7.2.1) but several problems may occur:

e There might be several solutions. This happens when the vector space cor-
responding to the maximal eigenvalue has a dimension greater than 1.

e Evenif there isaunique solution, the iteration () may not converge when
the graph does not have some desired properties.

All these cases are completely characterized in the Theorem of Perron-
Frobenius that we give next.

Theorem 7.2.1

Perron-Frobenius [48]. Let L be an nonnegative matrix corresponding to a graph
G. There exists an eigenvalue  which is real positive and which is greater than
the modulus of any other eigenvalue. Furthermore,

1. If G is strongly connected then the vector space for r is of dimension 1.

2. If G is aperiodic and Z, general enough (e.g. not zero) then the induction
(t) converges towards the eigenvector for » of modulus 1. Note that the
converse is true in the sense that if the graph is not aperiodic it is always
possible to find an x, such that (f) does not converge.

In order to solve the convergence problem, Google [49] uses the following
patch. Recall that L is defined in this case by L[i, j|] = 1/d]i] iff there is an
edge from 7 to j. A new matrix L’ is defined such that L'[i,j] = L[i,j] + €
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where e isasmall real. Then the fixpoint is computed over L' instead of L. Note
that L' corresponds to a new graph G’ which is G plus a “small” edge for any
pair 7, j. Observe that the new graph G’ is strongly connected and aperiodic thus
the convergence of (1) is guaranteed by Theorem 7.2.1. For each e, this gives
an importance vector z.. It is not hard to prove that when e goes to zero, z.
converges to an eigenvector of L with a maximal real positive value. Thus, for
e small enough, z. may be seen as a good approximation of the importance. For
some mysterious reason, Google sets? € t0 0.2.

Another way to cope with the problem of convergence is to consider the fol-
lowing convergence suite:

Ly, + yn

) Y1 = ———
() G = Ty gl

If r isthe maximal eigenvalue of a nonnegative matrix L then r 4 1 can be shown
to be the maximal eigenvalue of L + I. Thus, asolution 3 of (1) isalso asolution
of 1. If L isstrongly connected then L + I is aperiodic and thus (1') converges
towards the importance. If L is not strongly connected there might be several
linearly independent eigenvector, but still it is easy to show that (1') converges
towards the projection of z, on the eigenspace corresponding to all solutions.

On the web  The computation of page importance in a huge dynamic graph has
recently attracted a lot of attention because of the web, e.g., [80, 16, 88, 20, 41].
It isamajor issuein practice that the web is not strongly connected. For instance,
in the bow tie [17] vision of the web, the OUT nodes do not branch back to the
core of the web. Although the same computation makes sense, it would yield a
notion of importance without the desired semantics. Intuitively, the random walk
will take us out of the core and would be “trapped” in OUT pages that do not lead
back to the core (the “rank sink” according to [16]). So, pagesin the core (e.g., the
White House homepage) would have a null importance. Hence, enforcing strong
connectivity of the graph (by “patches”) is more important from a semantic point
of view than for mathematical reasons. In asimilar way to Google, our algorithm
enforces the strong connectivity of the graph by introducing “small” edges. More
precisely, in our graph, each node pointsto a unique virtual page. Conversely, this
virtual page pointsto all other nodes.

2Greater values of € increase the convergence speed.
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Our Algorithm Our agorithm computes the characteristic vector of (1'), and
doesn’'t require any assumption on the graph. In particular, it works for any link
matrix L, assuming that L can beread line by line. More precisely, for each page
that is read, we use the values L|[i, j| where L[i, j] > 0. For instance, in Google's
link matrix, these values correspond to outgoing links (the pages j pointed by page
i), which are known at little cost by parsing the HTML file. However, the cost
may be higher in some other cases (e.g., when L[i, j| > 0 represents incoming
links, we need to store and read an index of links). In terms of convergences,
the different cases are characterized in a similar way as previoudly, e.g. if G is
strongly connected, the solution is unique and independent of theinitial vector x .

Previous work is abundant in the area of Markov chains and matrix fixpoint
computations, e.g. [32] or [80]. In most cases, infinite transition matrix are man-
aged by increasing the size of a known matrix block. Some works also consider a
changing web graph, e.g. an incremental computation of approximations of page
importance is proposed in [30]. As far as we know, our algorithm is new. In
particular:

e it may start even when a (large) part of the matrix is still unknown,

e it helps deciding which (new) part of the matrix should be acquired (or
updated),

e itisintegrated in the crawling process,
e it works on-line even while the graph is being updated.

For instance, after crawling 400 million pages on the web, we have a relatively
precise approximation of page importance for over 1 billion pages, i.e., even of
parts of the matrix corresponding to pages that we did not read so far.

7.3 Static graphs: OPIC

We consider in this section the case of a static graph (no update). We describe the
algorithm for Google link matrix L as defined previoudly. It can be generalized to
work for other link matrices. We present the OPIC algorithm and show its correct-
ness. OPIC stands for Online Page Importance Computation. We briefly discuss
the advantages of the technique over the off-line algorithm. We will consider
dynamic graphsin the next section.
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Informal description

For each page (each node in the graph), we keep two values. We call the first
cash. Initialy, we distribute some cash to each node, e.g., if there are n nodes,
we distribute 1/n to each node. While the agorithm runs, the cash of a node
records the recent information discovered about the page, more precisely, the sum
of the cash obtained by the page since the last timeit was crawled. We also record
the (credit) history of the page, the sum of the cash obtained by the page since
the start of the algorithm until the last time it was crawled. The cash istypically
stored in main memory whereas the history may be stored on disk. When a page
i isretrieved by the web agent, we know the pages it points to. In other words,
we have at no cost the outgoing links information for the retrieved page. We
record its cash in the history, i.e., we add it to the history. We also distribute this
cash equally between all pages it points to. We reset the cash of the page i to 0.
This happens each time we read a page. We will see that this provides enough
information to compute the importance of the page as used in standard methods.
We will consider in a further section how this may be adapted to handle dynamic

graphs.

Detailed description

We use two vectors C[1..n| (the cash) and H|[1..n| (the history). The initialization
of C' has no impact on the result. The history of a page is smply a number. A
more detailed history will be needed when we move to an adaptive version of the
algorithm. Let usassumethat the history H isstored on disk and C' iskept in main
memory. In order to optimize the computation of |H| = ). H|[i], avariable Z is
introduced so that Z = |H | at each step. The algorithmis shown in Figure 7.1.

In this algorithm, we use |H| = >, H[i]| = Z. At each step, an estimate of
any page k’'simportanceis (H k] + C[k])/(Z + 1).

Note that the algorithm does not impose any requirement on the order we
visit the nodes of the graph as long as each node is visited infinitely often (some
minimal fairness). This is essential since crawling policies are often governed
by considerations such as robots exclusion, politeness (avoid rapid-firing), page
change rate, focused crawling.

As long as the cash of children is stored in main memory, no disk access is
necessary to update it. At the time we visit a node (we crawl it), the list of its
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for each i let CI[i]
for each 1 let HI[1i]
let Z:=0 ;

1/n ;

Il
(@]

do forever
begin

choose some node 1 ;
o

% each node is selected
% infinitely often

o\°

o\°

o

[i] += CI[i];
%% unique read/write disk ac-
cess per page

for each child j of i,

do C[j] += C[i]/outl[i];
%% Distribution of cash
% depends on L

o\°

Z += CI[1i];
C[i] := 0
end

I

Figure 7.1: On-line Page Importance Computation

children is available on the document itself and does not require disk access. Two
disk accesses (one read, one write) are needed for updating the history of the page
that is visited. However, note that our crawler needs anyway to read and write
some metadata (e.g. the date of crawl) for each page that isvisited. Thus, given
that the history value is stored with the other metadata, updating it does not add
any cost in terms of disk access.

Each page has at |east one child, thanksto the “small” edges that we presented
in the previous Section (and that pointsto the virtual page). However, for practical
reasons, the cash of the virtual page is not distributed all at once. Thisissueisin
particular related to the discovery of new pages and management of variable sized
graphs that we consider |ater.

We next prove the correctness of the algorithm.
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Proof of correctness

Consider agraph GG of n nodes. We will use the following notation:

Notation 7.3.1

We note C; and H; the values of vectors C' and H at the end of the ¢-th step of the
algorithm. The vector C, denotes the value of vector C' at initialization (all entries
are1/n). Let X, be defined by:

e, Vi X [) = o

(22 Hili])

Assuming the graph is strongly connected, when ¢ goes to infinity, we will see
that:

H,

X, = —
" H|

e |H,| goesto infinity
o
(L' * X;) — X3 < T
e X =1.
Thiswill show the following theorem:
Theorem 7.3.1
The vector X; converges to the vector of importance, i.e.,

AImp, limy Xy = Imp

Recall that the algorithm assumes that all pages are read infinitely often. In
other words, for each time ¢, for each page k, there exists some timet’ > ¢ such
that page k£ will beread at timet'.

Vt,Vk, 3t t' > t, choosenode(t') = k

To prove this theorem, we use the five following lemmas:

Lemma 7.3.2
Thetotal amount of all cash is constant and equal to theinitial value, i.e., for each

t i Celil = 2200, Golil =1
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Proof: This is obvious by induction since we only distribute each node cash
among the children.

Lemma 7.3.3
After each step ¢, we have for each page j,

L[i, j]
outi]

Hj]+ Cilj] = Coli] + Y. ( Hyi))

(i ancestor of j)

Proof: The proof is by induction. Clearly, the lemmais true at time ¢t = 0.

Suppose it is true at time ¢ for each element j. At step ¢ + 1, some page k is

crawled. We provetheformulaholdsat timet+1 for each element j. We consider
the two cases. j equals k£ or not.

j =k If j =k, thentheright term doesn’t change: Vi, i # j, H,,1[i] = Hy[i]. The

left term value doesn’t change either, the cash is added to H and then set to

z€r0. SO Hy i1 [j]+ Ciya[j] = Hilj] + Cyly], and the equationistrueat ¢ + 1.

j # k Then C,.[j] increases by C,[k] = 21 so

outli] *

L[k, j]
out[k]

Healil+ Conli = Golil+ 3 (G« Hili) + Cilkl
(i ancestor of 7)

Now Vi, i # k, Hy1[i] = Hyi], and dso Hy 4 [k] = H,|k] + C[k|, and this shows
the result.

Lemma 7.3.4
If all pages are infinitely read, >, H,[j] goesto infinity.

Proof: Thislemmaistrueif there existse > 0 such that starting at any time ¢,
>_; Hi[j] will eventually increase of e. Consider e = 1/n, i.e. e is the average
value of cash on al pages. Let ¢ be any time. At time¢, there isapage ; having
more than e cash. By definition of the algorithm, the cash of page j can not
decrease until j isread. Moreover, the page 5 will be read one more time after
t because all pages are read infinitely often. Thus, the history of the page will
increase of at least e when page j isread, and thiswill increase » | ; H,[j].

Note that for Lemma 7.3.4, it is not necessary that GG is a strongly connected
graph: the proof works for any graph. Considering a strongly connected graph, a
stronger result is obtained as follows.
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Lemma 7.3.5
Consider a strongly connected graph G with n nodes.

(a) Leti,; beany pair of nodes. Then, ¢ in the cash of node ¢ eventually leads
to ¢/n™ in the cash of node j.

(b) Asaconsequence, for each node j, H,[j] goesto infinity.

Proof: Inthe agorithm, each node of the graph, when it isread, splits the value
by at most n, because it can’t have more than n different links. We suppose that
the graph is strongly connected, so there is a path from ¢ to 7, and it is no longer
than n. Let's note P, ...P, the pages for this path. Thus, each time page P, is
crawled with some cash ¢, the cash of page P, ., isincreased by at least ¢/n. Now
we suppose that every pageis crawled an infinite number of times. Consider some
time t. We eventually we will crawl P, at timet; > t, then eventualy P, at time
ty > tq, ... until P,. Thuswe will eventually have distributed at least ¢/n™ in the
cash of j. Thisshows (a).

Consider any moment ¢, some node contains at least 1/n cash (because
Y. Cili] = 1). Thus, it will eventualy increase the cash of j (thus eventually
its history) by 1/2™. In other words, there is a positive constant e (for instance
e = 1/n™) such that for each page j, for each time ¢, we will eventually increase
the history of j by e at sometimet’' > t. Thus H,[j] goesto infinity. This shows
(b). Thisis stronger than Lemma 7.3.4 in that we show here that H|j] goes to
infinity for each node j, whereas Lemma7.3.4, only | H| goes to infinity.

Now it is possible to describe the limit when ¢ goes to infinity.
Lemma 7.3.6
1imt_>+oo |LI * Xt — Xt| =0

Proof: By definition of X, for each i, X,[i] = H[i]/ Y  H[j]. Then,
By Lemma7.3.3,

ml+ll=clls Y (b
(i ancestor of j)

Let uslook at the jth coordinate of | L' « X; — X|:

J]‘

(Ll % Ht Ht ]] ‘ ‘

> Hilk Zk H, K]
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Its limit is O because, when ¢ goes to infinity, >, H,[j] goes to infinity (by
Lemma7.3.4) and Cy[j], C;[j] are bounded by 1.

By Lemma7.3.6, X, goesinfinitely close to a characteristic vector of L of the
dominant characteristic value r. This suggests using X, = H,/Z as an estimate
of page importance.

Theorem 7.3.7
Thelimitof X, isImp,i.e, lim;_. . X; = Imp

Proof: By the previousresult,

Jdim (L= 1) X, =0
where 1 isthe identity matrix (1 in the diagonal and O elsewhere). Consider now
the decomposition of X; = S; + D, where S; isin Ker(L' — 1) (the kernel of
matrix L' —1), and D, in the corresponding orthogonal space where the restriction
of L' — lisinvertible. Because S; isin Ker(L' — 1), wehaveVt, L' « X; — X; =
L' x D, — D, and so

lim |(L'—1) %Dy =0

t——400

We can now restrict to the orthogonal space of Ker(L'—1),inwhich L'—1 has
an inverse called H. The matrix multiplication being continuous, we can multiply
to the left by H, which is constant, and thus

lim |D,| =0

t—4o00

Now if we use the fact that there is a single fixpoint solution for L', that mean
that Ker(L' — 1) isof dimension 1 and that

Vi, X; = oy x Imp+ D,

where o, isascalar. Now because | D;| converges to zero, and | X;| = |Imp| = 1,
we have:

lim X; =Imp

t——+o0
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Note that we can add 1 (i.e. ) . Cy[i]) to the denominator Z by using the
cash accumulated since last crawl, and thus have (on average) a marginally better
estimate. More precisely, one can use for page 7,

H,[j] + Ci[j]
(D2 Helt]) +1

We will mention some details of the implementation in Section 7.6. We can
already mention advantages over the off-line algorithm. OPIC uses only local
information, i.e. the outgoing links of the page that is being crawled that can be
found inthe page as URLs. Thus our algorithm presents the foll owing advantages:

Advantages over the off-line algorithms The main advantage of our algorithm
is that it allows focused crawling. Because our agorithm is run online and its
results are immediately available to the crawler, we use it to focus crawling to
the most interesting pages for the users. Thisis in particular interesting in the
context of building a web archive [4], when there are strong requirements (and
constraints) on the crawling process.

Moreover, since we don’t have to store the matrix but only a vector, our al-
gorithm presents the following advantages:

1. It requires less storage resources than standard algorithms.
2. It requiresless CPU, memory and disk access than standard algorithms.
3. Itiseasy to implement.

Our agorithm is also well adapted to “continuous’ crawl strategies. The
reason is that storing and maintaining the link matrix during a “continuous’
crawl of the web (when pages are refreshed often) is significantly more expensive
than for single “snapshot” crawl of the web (when each page is read only once).
Indeed, when information about specific pages has to be read and updated fre-
quently, the number of random disk access may become a limiting factor. In our
experiment for instance, the crawler was retrieving hundreds of pages per seconds
on each PC (see Section 7.6). However, note that the storage of alink matrix may
be useful beyond the computation of page importance. For instance, given a page
p, Google provides the list of pages pointing to it. This means that the matrix (or
its transpose) is maintained in some form. Another usage of the link matrix is
exhibited in [42].
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7.4 Crawling Strategies

In this section, wefirst consider different crawling strategies that impact the speed
of convergence of our algorithm. Then, we study how they can be used in the case
of a changing graph. Implementations aspects and experiments are considered in
the next section.

7.4.1 On convergence

As previously mentioned, the error in our estimate is bounded by ﬁ Let us
call 7 = 7 = 1/, H[k] the error factor, although this s, strictly speaking,
not the error (but an upper bound for it). Now, in principle, one could choose a
very bad strategy that would very often select pages with very low cash. (The
correctness of the algorithm requires that each page is read infinitely many times
but does not require the page selection strategy to be smart.) On the other hand, if
we choose nodes with very large cash, the error factor decreases faster.
To illustrate, consider three page selection strategies:

1. Random : We choose the next page to crawl randomly with equal probabil-
ity. (Fairness. for each ¢y, the probability that a page will be read at some
t > to goesto 1 when ¢t goesto infinity.)

2. Greedy : We read next the page with highest cash. Thisis a greedy way to
decrease the value of the error factor. (Fairness: For a strongly connected
graph, each page isread infinitely often because it accumulates cash until it
iseventualy read. See Lemma 7.3.5 in the appendix).

3. Cycle : We choose some fixed order and use it to cycle around the set of
pages. (Fairnessis obvious.) We considered this page selection strategy
simply to have a comparison with a systematic strategy. Recall that system-
atic page selection strategies impose undesired constraints on the crawling
of pages.

Remark 7.4.1

(Xyleme strategy) The strategy for selecting the next page to read used in Xyleme
is close to Greedy. It is tailored to optimize our knowledge of the web [89], the
interest of clients for some portions of the web, and the refreshing of the most
important pages that change often.
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Random vs. Greedy. To get a feeling of how Random and Greedy progress,
let us consider some estimates of the values of the error factor for these two page
selection strategies. Suppose that at initialization, the total value of the cash of all
pagesis 1 and that there are n pages. Then:

e Random : The next page to crawl is chosen randomly so its cash is on
average % Thus, the denominator of the error factor is increased by % on

average per page.

e Greedy : A page accumulates cash until it reaches the point where it is
read. Let o be the average cash of a page at the time it isread. On av-
erage, the cash of the page is /2 if we suppose that cash is accumulated
linearly by pages until they are read. This result has been confirmed by ex-
periments. Since the total of the cash is 1, this shows that « is2 * (1/n).
Thus the denominator of the error factor is increased by % on average per
page read. Thisresult has also been confirmed by experiments, the average
“cash” value of pages at the time they are crawled iscloseto %

Thus the error factor decreases on average twice faster with Greedy than with
Random. We will see with experiments (in Section 7.6) that, indeed, Greedy con-
verges faster. Moreover, Greedy focuses resources on important pages. For these
pages, it outperforms Random even more.

7.5 A changing graph: The Adaptive OPIC al-
gorithm

Consider now a dynamic graph (the case of the web). Pages come and disappear
and edges too. Because of the time it takes to crawl the web (weeks or months),
our knowledge of the graph is not perfect. Page importanceis now amoving target
and we only hope to stay closetoit.

It is convenient to think of the variable Z = |H| as the clock. Consider two
timeinstantst—7', ¢ corresponding to Z having thevaluet—7" and t. Let H,_r,[i]
be the total of cash added to the history of page : betweentimet — T and ¢, i.e.,
Hy[i] — Hyrli]. Let

Ht—T,t[j] _ Ht—T,t [J]

Vi, Xerli] = (> Hi—ryli]) - r
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Because the statement of Theorem 7.3.3 does not impose any condition on the
initial state of X, it is obvious that X, ; converges to the vector of importance
when T' goes to infinity. (Note that on the other hand, for afixed 7', when ¢ goes
to infinity, .X; » does not converge to the vector of importance.) Using the data
gathered between ¢t — 1" and ¢, comes to ignoring the history beforetimet — 1" and
starting with the state of the cash at time ¢ — T for initial state. Observe that this
state may be not more informative than the very first state with equal distribution
of cash.

We thus estimate the importance of a page by looking at the history between
t (now) and ¢t — T'. We call theinterval [t — T, t] the (time) window. Thereisa
trade-off between precision and adaptability to changes and a critical parameter
of the technique is the choice of the size of the window.

The Adaptive OPIC algorithm We next describe (variants of) an agorithm,
namely Adaptive OPIC, that compute(s) page importance based on atime window.

In Adaptive OPIC, we have to keep some information about the history in a
particular time window. We considered the following window policies:

e Fixed Window (of sizeT'): For every page i, we store the value of cash C,|i]
and the global value Z, for al timesit was crawled since (now - 7).

e Variable Window (of size k): For every page ¢, we store the value of cash
C4[i] and the global value Z, for the last k times this page was crawled.

e Interpolation (of timeT'): For every page i, we store only the Z, value when
it was last crawled, and an interpolated history H[i] (to be defined) that
estimates the cash it got in atime interval of size " before that last crawl.

In the following, we call measure a pair (C, Z). Note that in Variable Win-
dow, we store exactly & measures, and that in Interpolation, we store only one.
Note also that in Fixed Window, the number of measures varies from one page to
another, so this strategy is more complex to implement.

In our analysis of Adaptive OPIC, there will be two main dimensions: (i) the
page selection strategy that isused (e.g., Greedy or Random ) and (ii) the window
policy that is considered (e.g., Fixed Window or Interpolation).

Fixed Window One must be aware that some pages will be read rarely (e.g.,
once in several months), whereas others will be read perhaps daily. So there are
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Figure 7.2: Simple Interpolation

huge variations in the size of histories. For very large histories, it is interesting
to use compression techniques, e.g., to group several consecutive measures into
one. On the opposite, we have too few measuresfor very unimportant pages. This
has a negative impact on the speed of convergence of the algorithm. By setting a
minimum number of measures per page (say 3), experiments show that we obtain
better results. See Section 7.6.

Interpolation It is tailored to use little resources. Indeed, for each page, the
history smply consists of two values. Thisis what we tested on real web data
(See Section 7.6). It is the policy actually used in Xyleme [118, 89, 119]. It
is based on a fixed time window of size T'. The algorithm uses for history two
vectors H[1..n], Z[1..n]:

e H{i] represents the sum of the cash acquired by the page i during a time
period 1" before the last crawl. Thisvalue is obtained by interpolation.

e Z|i] isthe Z-time of that last crawl.

When we visit a page and update its history, we estimate the cash that was
added to that page in the interval 1" until that visit. See Figure 7.2 for an intuition
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of the interpolation. We know what was added to its cash between time Z[:] and
Z, C[i]. The interpolation assumes that the page accumulates cash linearly. This
has been confirmed by experiments. More precisely, the history is updated as

follows: '
H[) « =220 o) iz -2 <T
Cli] * 7L+ otherwise

Expanding the graph  When the number of nodes increases, the relative diffi-
culty to assign a cash and a history to new nodes highlights some almost philo-
sophical issues about the importance of pages. Consider the definition of im-
portance based on (). When we crawl new pages, these pages acquire some
importance. The importance of previously known pages mechanically decreases
in average simply because we crawled more pages. This is true for instance in
the random walk model: adding new pages of non-null probability to be read can
only decrease the probability of other pages to be read. However, these changes
in pages importance seem unfair and are not expected by users of the system.
We assign to each new page a default history that corresponds to the importance
of recently introduced pages. Experiments confirmed this to be a good estimate.
The reason is that important pages are discovered first, whereas new or recently
introduced pages are often the least important ones.

Focused crawling and page discovery In our system, the scheduling of pages
to be read depends mostly on the amount of “cash” for each page. The crawling
speed gives the total number of pages that we can read for both discovery and
refresh. Our page importance architecture allows usto allocate resources between
discovery and refresh. For instance, when we want to do more discovery, we
proceed as follows: (i) we take some cash from the virtual page and distribute it
to pages that were not read yet (ii) we increase the importance of “small” edges
pointing to the virtual page so that it accumulates more cash. To refresh more
pages, we do the opposite. We can also use a similar method to focus the crawl
on a subset of interesting pages on the web. For instance, we used this strategy
to focus crawling to XML pages [118, 89]. In some other applications, we may
prefer to quickly detect new pages. For instance, we provide to a press agency a
“copy tracker” that helps detecting copies of their News wires over the web. The
problem with News pages is that they often last only a few days. In this partic-
ular application, we process as follows for each link: pages that are suspected to
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contain news wires (e.g. because the URL contains“news’) receive some “ extra’
cash. This cash is taken from the (unique) virtual page so that the total value of
cash in the system does not change.

7.6 Implementation and experiment

We implemented and tested first the standard off-line algorithm for computing
page importance, then variants of Adaptive OPIC. We briefly describe some as-
pects of the implementation. We then report on experiments first on synthetic
data, then on alarge collection of web pages.

7.6.1 A distributed implementation

Weimplemented adistributed version of Adaptive OPIC that can be parameterized
to choose a page selection strategy, a window policy, awindow size, etc.

Adaptive OPIC runs on acluster of Linux PCs. The codeisin C++. Corbais
used for communications between the PCs. Each crawler isin charge of a portion
of the pages of the web. The choice of the next page to read by a crawler is
performed by a separate modul e (the Page Scheduler). The split of pages between
the various crawlersis made using a hash function #,,,, of the URLSs. Each crawler
evaluates the importance of pagesit isin charge of. Its portion of the cash vector
isin main memory, whereas its portion of the history ison disk. The crawler also
uses an (in memory) hash table that allowsto map a URL handled by this crawler
toitsidentifier (an integer) in the system. Finaly, it uses a map from identifiersto
URLs. Thislast map may reside on disk. Each crawler crawls millions of pages
per day. The bandwidth was clearly the limiting factor in the experiments. For
each page that is crawled, the crawler receives the identifier of a page from the
page scheduler and then does the following:

Fetch: It obtainsthe URL of the page, fetches the page from the web and parses
It;

Money transfers: It distributesthe current cash of the page to the pagesit points
to. For each such page, it uses h,,,,; to obtain the name of the server in charge
of that page. It sends a“money transfer” to that server indicating the URL
of the page and the amount. Thisis a buffered network call.
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Records: It updates metadata (e.g. date of crawl, hash signature) about the
visited page. Thisrequires a pair of disk access (aread and a write). The
history of the page, stored with the other metadata, is also updated. The
cashisreset to null.

Each crawler also processes the money transfer orders coming from other servers.
Communications are asynchronous.

It should be observed that for each page crawled, there are only two disk ac-
cesses, one to obtain the metadata of the page and one to update the metadata,
including the history. Besides that, there are Corba communications (on the local
network), and main memory accesses.

7.6.2 Synthetic data

Although we started our experiments with alarge collection of URLSs on the web,
synthetic data gave us more flexibility to study various input and output paramet-
ers, such as: graph size, graph connectivity, change rates, types of changes, distri-
bution of in-degrees, out-degrees and page importance, importance error, ranking
errors. So, we report on them first.

The graph model We performed experiments with various synthetic graphs
containing dozens of millions of web pages. These experiments showed that the
use of very large graphs did not substantially alter the results.

For instance, we started with graphs obtained using a Poisson distribution on
the average of incoming links, a somewhat simplistic assumption. We then per-
formed experiments with more complex distributions following recent studies of
the web graph [17], e.g., with a power distribution P(I = n) = 1/n*!. Results
were rather similar to those obtained using a Poisson distribution. In order to also
control the distribution of outgoing links and the correlations between them, we
tried severa graph modelsin the spirit of [37], but even with significant changes
of the graph parameters, the patterns of the results did not change substantially
from the simple graph model. So, we then restricted our attention to rather simple
graphs of reasonably small size to be able to test extensively, e.g., various page
selection strategies, various window sizes, various patterns of changes of the web.

In the remaining of this section, we will consider a simple graph model based
on the power distribution on incoming edges. Details omitted. The number of
nodesisfixed to N = 100 000 nodes.
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Figure 7.3: Convergence of OPIC (on all pages)

Impact of the page selection strategy First, we studied the convergence of
OPIC for various page selection strategies. We considered Random, Cycle and
Greedy. We compared the values of the estimates at different pointsin the crawl,
after crawling N pages, up to to 10 « /V pages.

The error we compute is the mean over the set of pages of the error between
the computation of OPIC at this state and the value of the fixpoint. More precisely,
we compute the average of the percentage of error:

| X [5]—Impj]]
* ZJ' Impl[j]

100
N

where I'mp is obtained by running the off-line algorithm until afixpoint isreached
(with negligible error).

Consider Figure 7.3. The error is about the same for Greedy and Cycle. This
result was expected since previous studies [59] show that given a standard cost
model, uniform refresh strategies perform as good as focused refresh. As we
also expected, Random performs significantly worse. We also compared these,
somewhat artificially, to the off-line algorithm. In the off-line, each iteration of
the matrix isa computation on N pages, so we count /V “crawled pages’ for each
iteration. The off-line algorithm converges almost like Cycle and Greedy. This
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Figure 7.4: Convergence of OPIC (on important pages)

is not surprising since the crawl of NV pages with Cycle corresponds roughly to a
biased iteration on the matrix.

Now consider Figure 7.4. The error is measured now only for the top ten
percent pages, the interesting onesin practice. For this set of pages, Greedy (that
is tailored to important pages) converges faster than the others including the off-
line algorithm.

We also studied the variance. It is roughly the same for al page selection
strategies, e.g., amost no page had a relative error more than twice the mean
error. We also considered alternative error measures. For instance, we considered
an error weighted with page importance or the error on the rel ative importance that
has been briefly mentioned. We also considered the error in ordering pages when
their importance is used to rank query results. All these various error measures
lead to no significant difference in the results.

Impact of the size of the window Asalready mentioned, asmall window means
more reactivity to changes but at the cost of some lack of precision. A series of
experiments was conducted to determine how much. To analyze the impact of
the size of the window, we use Adaptive OPIC with the Greedy strategy and a
Fixed Window of M crawls, i.e., we keep for each page the history since the last
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Figure 7.5: Influence of window’s sizes

M crawls of the page. Similar results were obtained with other variants of the
algorithm. Consider Figure 7.5 ignoring the Interpolation policy for the moment.
The change rate is the number of pages that have their in-degree significantly
modified (i.e. divided par two or multiplied by two) during the time of crawling N
pages, where N isthe number of pages on the graph (i.e. thetime for “one” crawl
of the graph). For each change rate the graph is crawled ten times. The figure
shows the result for M = 4, 8, 16. The important point to notice is that we can
get reasonably close to the fixpoint with rather small windows (e.g., M = 8 here).
As previously mentioned, the trade-off is reactivity to changes versus precision.
When the time window becomes too small (e.g., M = 4 here), the error is more
important. Thisisbecause each measurefor apage givesonly atoo rough estimate
of this page importance, so the error is too large. Such an error may still be
acceptable for some applications.

Now observe the Interpolation experiment in Figure 7.5. First, note that it
performs almost as well as large Variable Window (e.g. M = 16) on graph with
few changes. Also, it adapts better to higher change rates (e.g. more than 1
percent). So, let us consider now the comparison of various window policies.
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Window Type and Size Measures
per page
Variable Window 8 measures 8
Fixed Window 8 months 8.4
Improved Fixed Window 4 months 6.1
Interpolation 4 months 1

Figure 7.6: Storage resources per time window

Impact of the window policy We compared different policies for keeping the
history. In this report, we use again the Greedy strategy. Various window policies
may require different resources. To befair, we chose policiesthat roughly reques-
ted similar amount of resources. Typically, we count for storage the number of
measures we store. (Recall that a measure consists of a value for C and one for
Z.) The five policies we compared used between 4 and 8 measures, except Inter-
polation that by definition uses only 1. Figure 7.6 shows the average number of
measures used per page in each case. These measures depend for Fixed Window
on the crawling speed which was set here to be N pages per month (the speed
was chosen here so that Fixed Window would use about as much resources as
the others). We also considered a variant of Fixed Window that forces each page
to have a minimum number of measures, namely Improved Fixed Window. We
required for the experiment mentioned here a minimum of 3 measures. Note that
this resulted for this particular data set in an increase of the average number of
measures from 4 t0 6.1.

Now consider Figure 7.7. It shows that for a similar number of measures,
Variable Window performs better than Fixed Window. The problem with Fixed
Window isthat very few measures are stored for unimportant pages and the con-
vergence is very slow because of errors on such pages. On the other hand, the
Improved Fixed Window policy yields significantly better results. The improve-
ment comes indeed from more reliability for unimportant pages.

The most noticeable result about the use of windows is that the algorithm
with the Interpolation policy outperforms the other variants while consuming less
resources. Indeed, the error introduced by the interpolation is negligible. Fur-
thermore, the interpolation seems to avoid some “noise” introduced when an old
measure is added (or removed) in Adaptive OPIC. In some sense, theinterpolation
acts as afilter on the sequence of measures.
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Figure 7.7: Influence of window’stypes

Of course the convergence of all variants of the adaptive algorithms depends
on the time window that is used. The excellent behavior of Interpolation con-
vinced us to adopt it for our experiments with crawls of the web. This is con-
sidered next.

7.6.3 Web data

We performed the web experiments using the crawlers of Xyleme [119]. The
crawl used the page selection strategy of Xyleme that has been previously men-
tioned and isrelated to Greedy. The history was managed using the Interpolation
policy.

During the test, the number of PCs varied from 2 to 8. Each PC had little disk
space and less than 1.5Gb of main memory. Some reasonable estimate of page
importance for the most important pages was obtained in afew days, asimportant
pages are read more frequently and discovered sooner than others. The experi-
ments lasted for several months. We discovered one billion URLS; only 400 mil-
lions of them were actually read. Note that because of the way we discover pages,
these are 400 million relatively important pages. Moreover, we could give reas-
onable importance estimates even on pages that were never read. This experiment

149



7.6. IMPLEMENTATION AND EXPERIMENT

was sufficient (with limited human checking of the results) to conclude that the
algorithm could be used in a production environment. Typically, for all practical
uses of importance we considered (such as ranking query results or scheduling
page refresh), the precision brought by the algorithm is rapidly sufficient. An ad-
vantage of the algorithm isalso that it rapidly detects the new important pages, so
they can be read sooner.

A main issue was the selection of the size of the time window. We first fixed it
too small which resulted in undesired variationsin the importance of some pages.
We then used a too large window and the reactivity to changes was too limited.
Finally, the window was set to 3 months. This value depends on the crawling
speed, which in our case was limited by the network bandwidth.

Our performance analysis also showed that using our system (Xyleme crawler
and Adaptive OPIC), it is possible to, for instance, crawl and compute page im-
portance (as well as maintain this knowledge) for agraph of up to 2 billions pages
with only 4 PCs equipped each with 4Gb of main memory and a small disk.

In the context of web archiving [4], we also conducted experiments to decide
if our measures of page importance could be used to select pages of interest for
the French national Library [73]. We selected thousand web sites, and 8 different
professional librarians ranked each site in order to decide which sites should be
archived (on a 1 to 4 scale). We defined the reference value for each site based
on the average of these rankings. Finally, we defined the “score” of alibrarian as
the number of sitesin which his rank was identical to the reference. The scores
of librarians ranged from 60 to 80 percent, and the score of our page importance
measures was 65 percent. This means that our measure based only on page im-
portance was as good as a professional librarian, although not as good as the best
ones. We are currently working on using other criteria [4] to improve the “auto-
matic” librarian.

Other Improvements During our experiments, we found out that the semantics
of linksin dynamic pages is (often) not as good as in pages fully written by hu-
mans. Links written by humans usually points to more relevant pages. On the
other hand, most links in dynamic pages often consist in other (similar) queries
to the same database. For instance, forum archives or catalog pages often contain
many linksthat are used to browse through classification. Similarly, we found out
that “internal” links (links that point to a page on the same web site) are often
less useful to discover other relevant pages than “externa” links (links to a page
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on some other web site). Motivated by that, we proposed in [4] a notion of site-
based importance that we describe in next Chapter. The main idea is to consider
links between web-sites instead of links between web-pages. We are currently
experimenting our algorithm with this new notion of importance per site.

7.7 Conclusion

We proposed a simple algorithm to implement with limited resources a realistic
computation of page importance over a graph as large as the web. We demon-
strated both the correctness and usability of the technique. Our algorithm can be
used to improve the efficiency of crawling systems sinceit allowsto focus on-line
the resources to important pages. It can also be biased to take into account specific
fields of interest for the users[4].

More experiments on real data are clearly needed. It would be in particular
interesting to test the variants of Adaptive OPIC with web data. However, such
tests are quite expensive.

To understand more deeply the agorithms, more experiments are being con-
ducted with synthetic data. We are experimenting with various variants of Ad-
aptive OPIC. We believe that better importance estimates can be obtained and are
working on that. One issue is the tuning of the algorithms and in particular, the
choice of (adaptable) time windows. We are also continuing our experiments on
changing graphs and in particular on the estimate of the derivative of the import-
ance. We finally want to analyze more in-depth the impact of various specific
graph patterns as done in [75] for the off-line algorithm.

We are also working on a precise mathematical analysis of the convergence
speed of the various algorithms. The hopeisthat thisanaysiswill provide uswith
bounds of the error of the importance, and will aso guide usin fixing the size of
windows and evaluating the changes in importance. We are also improving the
management of newly discovered pages.

The algorithm presented here computes page importance that depends on the
entire graph by looking at one page at atimeindependently of the order of visiting
the pages. It would be interesting to find other properties of graph nodes that can
be computed similarly.
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Chapter 8

A First Experience in Archiving the
French Web

Abstract.

The web is a more and more valuable source of information and organizations
are involved in archiving (portions of) it for various purposes, e.g., the Internet
Archive www.archive.org. A new mission of the French National Library (BnF)
is the ““dépot Iégal” (legal deposit) of the French web. We describe here some
preliminary work on the topic conducted by BnF and INRIA. In particular, we
consider the acquisition of the web archive. Issues are the definition of the peri-
meter of the French web and the choice of pages to read once or more times (to
take changes into account). When several copies of the same page are kept, this
leads to versioning issues that we briefly consider. Finally, we mention some first
experiments.

Xyleme [119] supplied us with the crawling system and data sets that we used
to conduct experiments. We would like to thank Mihai Preda, Gérald Sédrati,
Patrick Ferran and David Le-Niniven for their contribution.

This work is in the context of important projects. The French national library
and other libraries (e.g. Library of Congress) are considering building a consor-
tium to share experience and efforts towards archiving the web. The well known
foundation Internet Archive [58] also expressed interest in the present work.

153



8.1. INTRODUCTION

8.1 Introduction

Since 15372, for every book edited in France, an original copy is sent to the Biblio-
théque nationale de France (French National Library - BnF in short) in a process
caled dépdt Iégal. The BnF stores all these items and makes them available for
future generations of researchers. As publication on the web increases, the BnF
proposes providing asimilar service for the French web, a more and more import-
ant and valuable source of information. In this chapter, we study technical issues
raised by the legal deposit of the French web.

The main differences between the existing legal deposit and that of the web
are the following:

1. the number of content providers. On the web, anyone can publish docu-
ments. One should compare, for instance, the 148.000 web sitesin “.fr” (as
of 2001) with the 5000 traditional publishers at the same date.

2. the quantity of information: Primarily because of the simplicity of publish-
ing on the web, the size of content published on the French web is orders
of magnitude larger than that of the existing legal deposit and with the pop-
ularity of the web, thiswill be more and more the case.

3. thequality: Lotsof information on the web is not meaningful.

4. the relationship with the editors. With legal deposit, it is accepted (indeed
enforced by law) that the editors “push” their publication to the legal de-
posit. This“push” model is not necessary on the web, where nationa lib-
raries can themselves find relevant information to archive. Moreover, with
the relative freedom of publication, a strictly push model is not applicable.

5. updates. Editors send their new versionsto the legal deposit (again in push
mode), so it istheir responsibility to decide when a new version occurs. On
the web, changes typically occur continuously and it is not expected that
web-masters will, in general, warn the legal deposit of new rel eases.

6. perimeter: The perimeter of the classical legal deposit isreasonably simple,
roughly the contents published in France. Such notion of border is more
delusive on the web.

1This was adecision of King Francois the 1st.
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For these reasons, the legal deposit of the French web should not only rely
on editors “pushing” information to BnF. It should aso involve (because of the
volume of information) on complementing the work of librarians with automatic
processing.

There are other aspects in the archiving of the web that will not be considered
here. For instance, the archiving of sound and video |eadsto issues such as stream-
ing. Also, the physical and logical storage of large amounts of data brings issues
of long term preservation. How can we guarantee that several terabyte of data
stored today on some storage device in some format will still be readable in 20507?
Another interesting aspect is to determine which services (such as indexing and
querying) should be offered to users interested in analyzing archived web con-
tent. In the present chapter, we will focus on the issue of obtaining the necessary
information to properly archive the web.

We describe here preliminary works and experiments conducted by BnF and
INRIA. The focus is on the construction of the web archive. This leads us to
considering issues such as the definition of the perimeter of the French web and
the choice of pages to read one or more times (to take changes into account).
When several copies of the same page are kept, thisalso leadsto versioning issues
that we briefly consider. Finally, we mention some first experiments performed
with data provided by Xyleme's crawls of the web (of closeto abillion URL).

In Section 8.2, we detail the problem and mention existing work on similar
topics. In Section 8.3, we consider the building of the web archive. Section 8.4
deals with the importance of pages and sites that turn out to play an important
role in our approach. In Section 8.5, we discuss change representation, that is we
define a notion of delta per web site that we use for efficient and consistent refresh
of the warehouse. Finally we briefly present results of experiments.

8.2 Web Archiving

The web keeps growing at an incredible rate. We often have the feeling that it
accumulates new information without any garbage collection and one may ask
if the web is not self-archiving? Indeed, some sites provide access to selective
archives. On the other hand, valuable information disappears very quickly as
community and personal web pages are removed. Also the fact that there is no
control of changesin “pseudo” archivesisrather critical, because thisleaves room
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for revision of history. Thisiswhy several projectsaim at archiving the web. We
present some of them in this section.

8.2.1 Goal and scope

Theweb archiveintends providing future generations with arepresentative archive
of the cultural production (in awide sense) of a particular period of Internet his-
tory. It may be used not only to refer to well known pieces of work (for instance
scientific articles) but also to provide material for cultural, political, sociological
studies, and even to provide material for studying the web itself (technical or
graphical evolution of sites for instance). The mission of national libraries is to
archive a wide range of material because nobody knows what will be of interest
for future research. This also applies to the web. But for the web, exhaustiveness,
whichisrequired for traditional publications (books, newspapers, magazines, au-
dio CD, video, CDROM), can't be achieved. In fact, in traditional publication,
publishers are actually filtering contents and an exhaustive storage is made by na-
tional librariesfrom thisfiltered material. On the web, publishing isalmost free of
charge, more people are able to publish and no filtering is made by the publishing
apparatus. So the issue of selection comes again but it has to be considered in the
light of the mission of nationa libraries, which is to provide future generations
with alarge and representative part of the cultural production of an era.

8.2.2 Similar projects

Up to now, two main approaches have been followed by national libraries regard-
ing web archiving. The first one is to select manually a few hundred sites and
choose a frequency of archiving. This approach has been taken by Australia [85]
and Canada [70] for instance since 1996. A selection policy has been defined
focusing on institutional and national publication.

The second approach is an automatic one. 1t has been chosen by Nordic coun-
tries[12] (Sweden, Finland, Norway). The use of robot crawler makesit possible
to archive a much wider range of sites, asignificant part of the surface web in fact
(maybe 1/3 of the surface web for a country). No selection is made. Each page
that is reachable from the portion of the web we know of will be harvested and
archived by the robot. The crawling and indexing times are quite long and in the
meantime, pages are not updated. For instance, a global snapshot of the complete
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national web (including national and generic domain located sites) is made twice
ayear by the royal library of Sweden. The two main problems with this model
are: (i) thelack of updates of archived pages between two snapshots, (ii) the deep
or invisible web [90, 14] that can’'t be harvested on line.

8.2.3 Orientation of this experiment

Considering the large amount of content available on the web, the BnF deems
that using automatic content gathering method is necessary. But robots have to be
adapted to provide a continuous archiving facility. That iswhy we have submitted
a framework [71] that allows to focus either the crawl or the archiving, or both,
on a specific subset of sites chosen in an automatic way. The robot is driven by
parameters that are calculated on the fly, automatically and at a large scale. This
allowsusto alocatein an optimal manner the resourcesto crawling and archiving.
The goal istwofold: (i) to cover avery large portion of the French web (perhaps
“al”, athough all is an unreachable notion because of dynamic pages) and (ii) to
have frequent versions of the sites, at least for a large number of sites, the most
“important” ones.

It is quite difficult to capture the notion of importance of a site. An analogy
taken from traditional publishing could be the number of in-going links to a site,
which makes it a publicly-recognized resource by the rest of the web community.
Links can be consider similar, to a certain extent of course, to bibliographical
references. At least they give aweb visibility to documents or sites, by increasing
the probability of accessing to them (cf the random surfer in [5]). Thisisbringing
us back to the topic of Chapter 7. We believethat it isagood analogy of the public
character of traditionally published material (as opposed to unpublished, private
material for instance) and a good candidate to help driving the crawling and/or
archiving process|[71].

The techniques of Chapter 7 have to be adapted to the context of web archiv-
ing, that is quite different. For instance, as we shall see, we have to move from
a page-based notion of importance to a site-based one to build a coherent web
archive (See Section 8.4). This also leads to exploring ways of storing and ac-
cessing temporal changes on sites (see Section 8.5) as we will no longer have the
discrete, snapshot-type of archive but amore continuousone. To explorethese dif-
ficult technical issues, a collaboration between BnF and INRIA started last year.
The first results of this collaboration are presented here. Xyleme provided dif-
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ferent sets of data needed to validate some hypothesis, using the Xyleme crawler
developed jointly with INRIA. Other related issues, like the deposit and archiving
of sitesthat can not be harvested online [72] will not be addressed here.

One difference between BnF' slegal deposit and other archive projectsisthat it
focuses on the French web. To conclude this section, we consider how this simple
fact changes significantly the technology to be used.

8.2.4 The frontier for the French web

Given its mission and since others are doing it for other portions of the web, the
BnF wants to focus on the French web. The notion of perimeter isrelatively clear
for the existing legal deposit (e.g, for books, the BnF requests a copy of each
book edited by a French editor). On the web, national borders are blurred and
many difficulties arise when trying to give a formal definition of the perimeter.
The following criteriamay be used:

e The French language. Although this may be determined from the contents
of pages, it is not sufficient because of the other French speaking countries
or regionse.g. Quebec. Also, many French sitesnow use English, e.g. there
are more pagesin English than in French in inria.fr.

e The domain name. Resource locators include a domain name that some-
times provides information about the country (e.g. .fr). However, thisin-
formation is not sufficient and cannot in general be trusted. For instance
www.multimania.com is hosting a large number of French associations and
French personal sites and is mostly used by French people. Moreover, the
registration process for .fr domain names is more difficult and expensive
than for others, so many French sites choose other suffixes, e.g. .com or
.org.

e The address of the site. This can be determined using information obtain-
able from the web (e.g., from domain name servers) such as the physical
location of the web server or that of the owner of the web site name. How-
ever, some French sites may prefer to be hosted on serversin foreign coun-
tries (e.g., for economical reasons) and conversely. Furthermore, some web
site ownersmay prefer to provide an addressin exotic countries such as Ba
hamas to save on local taxes on site names. (With the same provider, e.g.,
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Gandi, the cost of a domain name varies depending on the country of the
owner.)

Notethat for these criteria, negativeinformation may be as useful as positive ones,
e.g., we may want to exclude the domain name .ca (for Canada).

The Royal library of Sweden, which has been archiving the Swedish web for
morethan 6 years now, has settled on an inclusion policy based on national domain
(.se and .nu), checking the physical address of generic domain name owners, and
the possibility to manually add other sites. The distribution of the domain names
they use is about 65 percent for nation domains (.se and .nu) and 25 percent for
generic domains (.net, .com, .org).

Yet another difficulty in determining the perimeter is that the legal deposit
Is typically not very interested in commercial sites. But it is not easy to define
the notion of commercial site. For instance, amazon.fr (note the “.fr”) is commer-
cial whereas groups.yahoo.com/group/vertsdesevres/ (notethe*.com”) isaFrench
public, political forum that may typically interest the legal deposit. Asin the case
of the language, the nature of web sites (e.g., commercia vs. non commercial)
may be better captured using the contents of pages.

No single criteria previously mentioned is sufficient to distinguish the docu-
ments that are relevant for the legal deposit from those that are not. Thisleadsto
using a multi-criteria based clustering. The clustering is designed to incorporate
some crucial information: the connectivity of the web. French sites are expected
to be tightly connected. Note that here again, thisis not a strict law. For instance,
a French site on DNA may strongly reference foreign sites such as Mitomap (a
popular database on the human mitochondrial genome).

Last but not least, the process should involve the BnF librarians and their
knowledge of the web. They may know, for instance, that 00h00.com is a web
book editor that should absolutely be archived in the legal deposit.

Technical corner. The following technique is used. A crawl of the web is star-
ted. Notethat sites specified asrelevant by the BnF librarians are crawled first and
the relevance of their pagesisfixed as maximal. The pagesthat are discovered are
analyzed for the various criteria to compute their relevance for the legal deposit.
Only the pages believed to be relevant (“suspect” pages) are crawled. For the
experiments, the OPIC algorithm (See Chapter 7) is used that alows to compute
page relevance on-line while crawling the web. The algorithm focuses the crawl
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to portions of the web that are evaluated as relevant for the legal deposit. Thisis
in spirit of the XML-focused on-line crawling presented in [79], except that we
use the multi-criteria previously described. The technique has the other advantage
that it is not necessary to store the graph structure of the web and so it can be run
with very limited resources.

To conclude this section, we note that for the first experiments that we men-
tion in the following sections, the perimeter was simply specified by the country
domain name (.fr). We intend to refine it in the near future.

8.3 Building the Archive

In this section, we present aframework for building the archive. Previouswork in
thisareais abundant [85, 12, 70], so we focus on the specificities of our proposal.

A simple strategy would be to take a snapshot of the French web regularly,
say n times a year (based on available resources). This would typically mean
running regularly a crawling process for a while (a few weeks). We believe that
the resulting archive would certainly be considered inadequate by researchers.
Consider aresearcher interested in the French political campaignsin the beginning
of the 21st century. The existing legal deposit would give him accessto all issues
of the Le Monde newspaper, adaily newspaper. On the other hand, theweb archive
would provide him only with afew snapshots of Le Monde web site per year. The
researcher needs a more “real time” vision of the web. However, because of the
size of theweb, it would not be reasonabl e/feasible to archive each site once a day
even if we use sophisticated versioning techniques (see Section 8.5).

So, we want some sites to be very accurately archived (almost in real-time);
we want to archive a very extensive portion of the French web; and we would like
to do this under limited resources. This leads to distinguishing between sites: the
most important ones (to be defined) are archived frequently whereas others are
archived only once in a long while (yearly or possibly never). A similar prob-
lematic is encountered when indexing the web [49]. To take full advantage of
the bandwidth of the crawlers and of the storage resources, we propose a general
framework for building the web archive that is based on a measure of import-
ance for pages and of their change rate. Thisis achieved by adapting techniques
presented in [79].
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8.3.1 Site vs. page archiving

Web crawlers typically work at the granularity of pages. They select one URL
to load in the collection of URLs they know of and did not load yet. The most
primitive crawlers select the “first” URL, whereas the sophisticated ones select
the most “important” URL [49, 79]. For an archive, it is preferable to reason at
the granularity of web sites rather than just web pages. Why? If we reason at the
page level, some pages in a site (more important than others) will be read more
frequently. Thisresultsin very poor views of web sites. The pages of a particular
site would typically be crawled at different times (possibly weeks apart), leading
to dangling pointers and inconsistencies. For instance, a page that is loaded may
contain a reference to a page that does not exist anymore at the time we attempt
to read it or to a page whose content has been updated?.

For these reasons, it is preferable to crawl sites and not individual pages. But
it is not straightforward to define a web site. The notion of web site loosely cor-
responds to that of an editor for the classical legal deposit. The notion of site may
be defined, as a first approximation, as the physical site name, e.g., www.bnf.fr.
But it isnot always appropriate to do so. For instance, www.multimania.com isthe
address of aweb provider that hosts a large quantity of sites that we may want to
archive separately. Conversely, aweb site may be spread between several domain
names. INRIA's web site is on www.inria.fr, www-rocq.inria.fr, osage.inria.fr,
www.inrialpes.fr, etc. There is no simple definition. For instance, people will
not all agree when asked whether www.leparisien.fr/news and www.leparisien.fr/
shopping are different sites or parts of the same site. To be complete, we should
mention the issue of detecting mirror sites, that is very important in practice.

It should aso be observed that site-based crawling contradicts compul sory
crawling requirements such as the prevention of rapid firing. Crawlers typically
balance load over many web sites to maximize bandwidth use and avoid over-
flooding web servers. In contrast, we focus resources on a smaller amount of web
sites and try to remain at the limit of rapid firing for these sites until we have a
copy of each. An advantage of thisfocusis that very often a small percentage of
pages causes most of the problem. With site-focused crawling, it ismuch easier to

2To see an example, one of the authors (an educational experience) used, in the web site of a
course he was teaching, the URL of an HTML to XML wrapping software. A few months later,
this URL was leading to a pornographic web site. (Domain names that are not renewed by owners
are often bought for advertisement purposes.) Thisis yet another motivation for archives.
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detect server problems such as some dynamic page server is slow or some remote
host is down.

8.3.2 Acquisition: Crawl, Discovery and Refresh

Crawl. The crawling and acquisition are based on a technique [79] that was
developed a INRIA inthe Xyleme project. The web datawe used for our first ex-
periments was obtained by Xyleme[119] using that technology. It allows, using a
cluster of standard PCs, to retrieve alarge amount of pageswith limited resources,
e.g. afew million pages per day per PC on average. In the spirit of [55, 59, 79],
pages are read based on their importance and refreshed based on their importance
and change frequency rate. This resultsin an optimization problem that is solved
with a dynamic algorithm that was presented in [79]. The algorithm has to be
adapted to the context of the web legal deposit and site-based crawling.

Discovery. We first need to allocate resources between the discovery of new
pages and the refreshing of aready known ones. For that, we proceed as follows.
The size of the French web is estimated roughly. In afirst experiment using only
“.fr” ascriteriaand a crawl of close to one billion of URLS, this was estimated to
be about 1-2 % of the global web, so of the order of 20 millions URLs. Then the
librarians decide the portion of the French web they intend to store, possibly all
of it (with al precautions for the term “all”). It is necessary to be able to manage
in parallel the discovery of new pages and the refresh of already read pages. After
a stabilization period, the system is aware of the number of pages to read for the
first time (known URL s that were never loaded) and of those to refresh.

It is clearly of interest to the librarians to have a precise measure of the size
of the French web. At a given time, we have read a number of pages and some
of them are considered to be part of the French web. We know of a much greater
number of URLS, of which some of them are considered “suspects’ for being
part of the French web (because of the “.fr” suffix or because they are closely
connected to pages known to be in the French web, or for other reasons.) This
allows us to obtain a reasonably precise estimate of the size of the French web.

Refresh. Now, let us consider the selection of the next pages to refresh. The
technique used in [79] is based on a cost function for each page, the penalty for

the page to be stale. For each page p, cost(p) is proportional to the importance
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of page i(p) and depends on its estimated change frequency ch(p). We define in
the next subsection the importance i(S) of a site S and we also need to define
the “change rate” of a site. When a page p in site S has changed, the site has
changed. The changerateis, for instance, the number of times a page changes per
year. Thus, the upper bound for the change rate of S isch(S) = >_ ;, s(ch(p)).
For efficiency reasons, it is better to consider the average change rate of pages, in
particular depending on the importance of pages. We propose to use a weighted
average changerate of asite as.

Our refreshing of web site is based on a cost function. More precisely, we
choose to read next the site S with the maximum ratio:

0(i(S), ch(S), lastCrawl(S), currentTime)
number of pagesin S

p(S) =
where 6 may be, for instance, the following simple cost function:

0 = i(S) * (currentTime — lastCrawl(S)) * ch(S)

We divide by the number of pages to take into account the cost to read the
site. A difficulty for thefirst loading of asiteisthat we do not know for new sites
their number of pages. This hasto be estimated based on the number of URLswe
know of the site (and never read). Note that this technique forces us to compute
importance at page level.

In next Section, we revisit the notion of importance, and we propose using a
notion of importance at web site level.

8.4 New notions of importance for web archiving

In this section, we extend the notion of page importance in two directions. The
first oneisto consider not only the graph of the web, but the content of each page.
The second one is to consider the notion of importance at web site level rather
than at page level.
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8.4.1 Importance of pages for the legal deposit

When discovering and refreshing web pages, we want to focus on those which
are of interest for the legal deposit. The classical notion of importance is used.
But it is biased to take into account the perimeter of the French web. Finally,
the content of pagesis also considered. A librarian typically would look at some
documents and know whether they are interesting. We would like to perform
such an evaluation automatically, to some extent. More precisely, we can use for
instance the following simple criteria:

e Frequent use of infrequent Words: The frequency of words found in the
web page is compared to the average frequency of such wordsin the French
web?. For instance, for aword w and apage p, itis:

Lp=Y few \where f,., = npw/N,

each word f,.p

and n,,, is the number of occurrences of a word w in a page and N, the
number of wordsin the page. Intuitively, it aims at finding pages dedicated
to a specific topic, e.g. butterflies, so pages that have some content.

e Text Weight: This measure represents the proportion of text content over
other content like HTML tags, product or family names, numbers or exper-
imental data. For instance, one may use the number of bytes of French text
divided by the total number of bytes of the document.

S1Z€ french words
S12€goec

-[pt —

Intuitively, it increases the importance of pages with text written by people
versus data, image or other content.

A first difficulty is to evaluate the relevance of these criteria. Experiments
are being performed with librarians to understand which criteria best match their
expertise in evaluating sites. Another difficulty is to combine the criteria. For
instance, www.microsoft.fr may have a high PageRank, may use frequently some
infrequent words and may contain a fair proportion of text. Still, due to its com-
mercial status, it is of little interest for the legal deposit. Note that librarians are

3To guarantee that the most infrequent words are not just spelling mistake, the set of wordsis
reduced to words from a French dictionary. Also, as standard, stemming is used to identify words
such astoy and toys.
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vital in order to“correct” errorsby positiveaction (e.g., forcing afrequent crawl of
00h00.com) or negative one (e.g., blocking the crawl of www.microsoft.fr). Fur-
thermore, librarians are also vital to correct the somewhat brutal nature of the
construction of the archive. Note however that because of the size of the web, we
should avoid as much as possible manual work and would like archiving to be as
fully automatic as possible.

As was shown in this section, the quality of the web archive will depend on
complex issues such as being able to distinguish the borders of a web site, ana-
lyze and evaluate its content. There are ongoing projects like THESU [54] which
aim at analyzing thematic subsets of the web using classification, clustering tech-
nigues and the semantics of links between web pages. Further work on the topic
is hecessary to improve site discovery and classification

To conclude this section, we need to extend previously defined notions to the
context of web site. For some, it suffices to consider the site as a huge web doc-
ument and aggregate the values of the pages. For instance, for Frequent use of
infrequent Words, one can use:

Iw - Zeach word j’c:: where fSaw = Zp mn S(np,w)/ Zp in S(Np)

Indeed, the values on word frequency and text weight seem to be more meaningful
at the site level than at the page level.
For page importance, it is difficult. Thisisthe topic of next section.

8.4.2 Site-based Importance

Observe that the notion of page importance is becoming less reliable as the num-
ber of dynamic pages increases on the web. A reason is that the semantics of the
web graph created by dynamic pages isweaker than the previous document based
approach. Indeed, dynamic pages are often the result of database queries and link
to other queries on the same database. The number of incoming/outgoing links
is now related to the size of the database and the number of queries, whereas it
was previously a human artifact carrying stronger semantics. In this section, we
present anovel definition of sites’ importance that is closely related to the already
known page importance. The goa is to define a site importance with stronger
semantics, in that it does not depend on the site internal databases and links. We
will see how we can derive such importance from this site model.
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To obtain a notion of site importance from the notion of page importance, one
could consider a number of alternatives:

e Consider only links between web sites and ignore internal links;

¢ Define site importance as the sum of PageRank values for each page of the
web site;

¢ Define site importance as the maximum value of PageRank, often corres-
ponding to that of the site main page.

Page importance, namely PageRank in Google terminology, is defined as the
fixpoint of the matrix equation X = L x X [16, 88], where the web-pages graph
G isrepresented asalink matrix L[1..n,1..n|. Let out[1..n] be the vector of out-
degrees. If thereis an edge for i to j, L[i, j| = 1/out[i], otherwise it is 0. We
note I,,4.[1..n] the importance for each page. Let us define a web-sites graph G’
where each node is aweb-site (e.g. www.inria.fr). The number of web-sitesisn’.
For each link from page p in web-site Y to page ¢ in web-site Z there is an edge
from Y to Z. This edges are weighted, that is if page p in site S is twice more
important than page p’ (in S aso), then the total weight of outgoing edges from
p will be twice the total weight of outgoing edges from p’. The obviousreason is
that browsing the web remains page based, thuslinks coming from moreimportant
pages deserve to have more weight than links coming from less important ones.
Theintuition underlying these measuresisthat aweb observer will visit randomly
each page proportionaly to its importance. Thus, the link matrix is now defined

by:

vz = Y st

/
pinY, qin Z ~1' inYIpage[p]

We note two things:

e |If the graph G representing the web-graph is (artificially or not) strongly
connected, then the graph G’ derived from G is also strongly connected.

o [/ is dtill a stochastic matrix, in that VY, >, L'lY, Z] = 1. (proof in ap-
pendix).

Thus, the page importance, namely PageRank, can be computed over G', L’
and there is a unique fixpoint solution. We prove in Appendix B that the solution
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isgiven by:

Isite[yy] = Z Ipage[p]

pinY
Thisformal relation between web site based importance and page importance
suggests to compute page importance for all pages, arather costly task. However,
it serves as a reference to define site-based importance, and helps understand its
relation to page-based importance. One could simplify the problem by consider-
ing, for instance, that all pages in a web site have the same importance. Based
on this, the computation of site-importance becomes much simpler. In this case,
if there is there is at least one page in Y pointing to one page in Z, we have
L'Y, Z] = 1/out(Y'), where out(Y") is the out-degree of Y. A more precise ap-
proximation of the reference value consists in evaluating the importance of pages
of agivenweb site S on therestriction of GG to S. Intuitively it meansthat only in-
ternal linksin S will be considered. This approximation isvery effective because:
(i) it finds very good importance values for pages, that correspond precisely to the
internal structure of the web-site (ii) it is cheaper to compute the internal page
importance for al web sites, one by one, than to compute the PageRank over
the entire web (iii) the semantics of the result are stronger because it is based on
site-to-site links.
This web-site approach enhances significantly previous work in the area, and
wewill see in next section how we al so extend previous work in change detection,
representation and querying to web sites.

8.5 Representing Changes

Intuitively, change control and version management are used to save storage and
bandwidth resources by updating in a large data warehouse only the small parts
that have changed [69]. We want to maximize the use of bandwidth, for instance,
by avoiding the loading of sites that did not change (much) since the last time
they were read. To maximize the use of storage, we typically use compression
techniques and a clever representation of changes. We propose in this section
a change representation at the level of web sites in the spirit of [63, 69] (See
Chapter 4). Our change representation consists of a site-delta, in XML, with the
following features:
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(i) Persistent identification of web pages using their URL, and unique identi-
fication of each document using the tuple (URL, date-of-crawl);

(i) Information about mirror sites and their up-to-date status,

(iii) Support for temporal queries and browsing the archive

The following example is a portion of the site-delta for www.inria.fr:

<website url="www.inria.fr">
<page url="/index.html">
<document date="2002-Jan-01" status="updated"
file="543B6.html"/>
<document date="2002-Mar-01" status="unchanged"
file="543B6.html"/>
</page>
<page url="/news.html">
<document date="2002-Mar-25" status="updated"
file="543GX6.html"/>
<document date="2002-Mar-24" status="error"s>
<error httperror="404"/>
</document >
<document date="2002-Mar-23" status="updated"
file="523GY6.html"/>

<document date="1999-Jan-08" status="new"
file="123GB8.html"/>
</page>
<mirror url="www-mirror.inria.fr" depth="nolimit">
<exclusion path="/cgi-bin" />
</mirrors>

</website>

Each web-site element contains a set of pages, and each page element con-
tains a subtree for each time the page was accessed. If the page was successfully
retrieved, a reference to the archive of the document is stored, as well as some
metadata. If an error was encountered, the page status is updated accordingly. If
the page mirrors another page on the same (or on another) web-site, the document
isstored only once (if possible) and istagged asamirror document. Each web-site
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tree also contains a list of web-sites mirroring part of its content. The up-to-date
status of mirror sitesis stored in their respective XML file.

Other usages. The site-deltais not only used for storage. It also improves the
efficiency of the legal deposit. In particular, we mentioned previously that the
legal deposit works at a site level. Because our site-delta representation is de-
signed to maintain information at page level, it serves as an intermediate layer
between site-level components and page-based modules.

For instance, we explained that the acquisition module crawls sites instead
of pages. The site-delta is then used to provide information about pages (last
update, change frequency, file size) that will be used to reduce the number of
pages to crawl by using caching strategies. Consider a news web site, e.g.
www.leparisien.fr/. News articles are added each day and seldom modified
afterwards, only the index page is updated frequently. Thus, it is not desirable to
crawl the entire web site every day. The site-delta keeps track of the metadata for
each pages and alows to decide which pages should be crawled. So it allows the
legal deposit to virtually crawl the entire web site each day.

Browsing the archive. A standard first step consists in replacing links to the
Internet (e.g. http://www.yahoo.fr/) by local links (e.g. to files). The processisin
general easy, some difficulties are caused by pages using java-scripts (sometimes
on purpose) that make links unreadable. A usua problem is the consistency of
the links and the data. First, the web graph is not consistent to start; broken links,
servers down, pages with out of date data are common. Furthermore, since pages
are crawled very irregularly, we never have a true snapshot of the web.

The specific problem of the legal deposit isrelated to temporal browsing. Con-
sider, for instance, a news web site that is entirely crawled every day. A user may
arrive at a page, perhaps via a search engine on the archive. One would expect
to provide him the means to browse through the web site of that day and also in
time, move to this same page the next day. The problem becomes seriously more
complex when we consider that all pages are not read at the same time. For in-
stance, suppose a user reads a version ¢ of page p and clickson alink to p’. We
may not have the value of page p’ at that time. Should we find the latest version
of p’ before t, the first version after ¢, or the closest one? Based on an evaluation
of the change frequency of p’, one may compute which is the most likely to be
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the correct one. However, the user may be unsatisfied by this and it may be more
appropriate to propose several versions of that page.

One may also want to integrate information coming from different versions of
apage into asingle one. For instance, consider the index of a news web site with
headlines for each news article over the last few days. We would like to automat-
ically group all headlines of the week into a single index page, as in Google news
search engine [50]. A difficulty is to understand the structure of the document
and to select the valuable links. For instance, we probably don’t want to group all
advertisements of the week!

8.6 Conclusion

As mentioned in the introduction, this chapter describes preliminary work. Some
experiments have already been conducted. A crawl of the web was performed and
data has been analyzed by BnF librarians. In particular, the goal was to evaluate
the relevance of page importance (i.e., PageRank in Google terminology). This
notion has been validated, to a certain extent, by the success of search engines that
use it. It was not clear whether it is adapted to web archiving. First results seem
to indicate that the correlation between automatic ranking and that of librarians
is essentially as similar as the correlation between ranking by librarians. These
results have been briefly presented in Chapter 7.

Perhaps the most interesting aspect of this archiving work is that it leads us
to reconsider notions such as web site or web importance. We believe that thisis
leading to a better understanding of the web. We intend to pursue thisline of study
and try to see how to take advantage of techniquesin classification or clustering.
Conversely, we intend to use some of the technology devel oped here to guide the
classification and clustering of web pages.
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Conclusion

In this thesis, we presented our work on the topic of change-control (i) for semi-
structured data, (ii) in the context of the web. There are two significantly different
approaches, we have seen that thefirst correspondsto amicroscopic-scaleanalysis
of documents from the web, whereas the second corresponds to a macroscopic-
scale analysis of the web. However, we discovered through their study that the
two approaches are strongly tied together:

e Quantity of data. The Internet contains huge amounts of data, but the data
often consists in collections of small documents. Thus, the quantitative
approach consistsin alocal analysisof data, but it relies of the fact that each
piece of datais part of alarger set of data. Thisisnecessary to improve the
performance of handling multiple pieces of data, and to scale up to the web
data size. Thus, efficiency, performance, memory and storage management
remain a key aspect of all systems.

e Quality of data. The semantic analysis of data also leads to connecting the
microscopic and macroscopic scales. Indeed, the semantic analysis consists
in finding a semantic value and interpretation for each small piece of data,
but in the context of the global data warehouse (or knowledge center) that
isthe web. This notion of context can be seen for instance through the use
of DTDs (or XMLSchema): each XML fragments is analyzed separately
but in the context of a global schema. The importance of the global schema
may also be seen as relying on a human or social semantic: for instance
the importance of web pages depends on the way authors consider each
web page they know of. Thus, the microscopic analysis of documents (e.g.
page links) enables the constructions of a macroscopic knowledge such as
page importance. Conversely, the global knowledge improves the semantic
analysis and semantical interpretation of pieces of local data
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The main part of our work consisted in proposing algorithms, their imple-
mentations and experiments to validate them. More precisely, the algorithms we
proposed are as follows:

e an algorithm to compute the differences between XML files,

e aformal model and some algorithms to manage change operations between
XML documents,

e an algorithm to compute online the page importance on the web, a proof
of the convergence of this algorithm, and an extension to support dynamic
graphs (i.e. the changing web) of thisalgorithm,

e a framework and algorithms that can be used in the context of the web
archiving, and in particular of choosing web sites to archive.

Moreover, we contributed to broadening existing knowledge with, for in-
stance, a comparative study of change detection algorithmsin XML, and XML
change representation formats.

This work has been published in international conferences as well as in French
community conferences. A list is presented in Appendix A. [69, 84, 35, 4, 5]. All
algorithms presented here have been implemented, in the context of important
projects such as [34, 117]. Most of our work has been transfered to industry, in
particular to Xyleme [119], or is available as open-source freeware [34].

Through our work, we noted the lack of a precise model and framework for
change-control on the web, both at the scale of documents and at the scale of the
Internet. Indeed, there are at this time no mechanisms that enable an application
to manage changes that occur on the web. While it is possible for a user to sub-
scribe to the notification system of some web sites, there is no global framework
that permits the management of changes all over the web. There is not enough
information for automatic surveillance, neither in documents (e.g. reliable HTTP
headersinformations, or HTML/XML metadata), nor at the scale of the web (e.g.
servers that have informations on the versions of collections of documents).

In asimilar way, we noted the lack of a standard for change-control in XML
documents. Some interesting formats have been proposed, but more work is ne-
cessary to obtain a precise framework and change model for managing temporal
and historical data.

174



For part of it, theseissues (e.g. storage and querying of changes) will probably
be solved in the future. Thiswill lead to the development of better servicesfor the
users of the web.

However, | am afraid that the lack of precisetoolsfor change management may
be due to the notion of changes itself. Isn’t there an almost philosophical issue to
ask whether changes can be managed, while the meaning of changesis to make
things different that what we already have? In the context of the SPIN project for
instance, we somehow faced that problem. The SPIN project consistsin managing
a set of web documents of interest for the users. The documents are changing, so
is our warehouse, and web services are al so enriching the knowledge contained in
our warehouse. We tried to develop change-control mechanism, but we realized
how difficult it was to develop a generic application for interpreting changes. This
difficult problem somehow relatesto “ belief revision”, theintroduction of changes
inlogical theories[82, 95].

As a consequence, change-applications should manipulate change itemsin a
framework that is precise and does not change itself. It isthen possible to process
and understand the changes of the items.

It is a challenge to develop and promote a framework that enables the efficient
management of changing data on the web, in the spirit (and with the success) of
XML and Web Services that are used today to exchange and store data.
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Appendix A

List of Publications

Journals

e Computing web page importance without storing the graph of the web (extended abstract),
Serge Abiteboul, Mihai Preda, Gregory Cobena, IEEE Data Engineering
Bulletin, Volume 25, March 2002

e A dynamic warehouse for XML data of the Web, Lucie Xyleme (I am one
of the 25 authors), IEEE Data Engineering Bulletin, June 2001.

Program Committees

e Organizer and PC-Member of 3rd ECDL Workshop on Web Archives,
Trondheim, Norway, 2003 (to come).

International Conferences

e Adaptive Online Page Importance Computation, Serge Abiteboul and Mi-
hai Preda and Gregory Cobena, WWW 2003 (Budapest, Hungary)

e Dynamic XML Documents with Distribution and Replication, Serge Abite-
boul and Angela Bonifati and Gregory Cobena and loana Manolescu and
Tova Milo, SIGMOD 2003 (San Diego, USA)

e A First Experience in Archiving the French Web, Serge Abiteboul, Gregory
Cobena, Julien Masanes, Gerald Sedrati, ECDL 2002 (Rome, Italy)
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e Detecting Changesin XML Documents, Gregory Cobena, Serge Abiteboul,
Amélie Marian, ICDE 2002 (San Jose, USA)

e Change-Centric Management of Versionsin an XML Warehouse, Amélie
Marian, Serge Abiteboul, Gregory Cobena, Laurent Mignet, VLDB 2001
(Rome, Italy).

e Monitoring XML dataon the Web, Benjamin Nguyen, Serge Abiteboul,
Gregory Cobena, Mihai Preda, SSIGMOD 2001 (Santa Barbara, USA).

Workshops and French Conferences

e A comparative study for XML change detection, Grégory Cobena, Talel
Abdessalem, Yassine Hinnach, BDA 2002 (Evry, France). Currently
submitted to TKDE Journal.

e Construction and Maintenance of a Set of Pages of Interest (SPIN), Serge
Abiteboul, Grégory Cobena, Benjamin Nguyen, Antonella Poggi, BDA
2002 (Evry, France)

e Detecting Changesin XML Documents, Gregory Cobena, Serge Abiteboul,
Amélie Marian, BDA 2001 (Agadir, Maroc) (also in ICDE 2002)

e Querying Subscriptionin an XML Web-house, Benjamin Nguyen, Serge
Abiteboul, Grégory Cobena, Laurent Mignet, on First DELOS Workshop
on Digital Libraries 2000.

Unpublished

e Crawling important sites on the Web, Gregory Cobena, Serge Abiteboul,
2nd ECDL Workshop on Web Archiving (Rome, Italy)

e A comparative study for XML change detection, Grégory Cobena, Talel
Abdessalem, Yassine Hinnach, Currently submitted to TKDE Journal.
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Appendix B

Site-Based Importance - Proof

In this appendix, we give the details of our model of site-based importance.

Lemma B.0.1

Let L[1..n,1..n| be the link matrix of web pages and /[1..n] the vector of im-
portance for pages. If there is an edge for i to j, L[i, j] = 1/out[i], otherwise
Lli, j] = 0. Thegraph G corresponding to L is strongly connected and a-periodic.
L isstochastic. Then L' defined as

Lwzi= >, el 1y,

pinY,qin Z plinY page[ ]

is also stochastic. We also note that if G is strongly connected, then the graph G’
corresponding to L' is also strongly connected.

Proof:
ZL’YZ] ZZZ page H*ZL[,q]
Z pinY plinY page qgin Z
Y- Y sl s
piny &P inY page Z qin Z
L'YZ page 1
2.7 ZY iy W[ 1"

Y LY, zl=1
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Theorem B.0.1
Let 7o [Y] = Zp in v Ipage[P]. Then I, isthe (unique) value of pageimportance
corresponding to the graph G and link matrix L.

Proof: The proof is derived from the formalism presented in our on-line page
importance work [5] (see Chapter 7). In this formalism, when a page is read,
we distribute its “cash” its children. The average speed at which a page receives
“cash” from other pages corresponds exactly to its importance. It is measure by
Hli], the accumulation of cash. In a summary, we have that H[i] = . H[j] *
L[, j], so that the normalization of H converges to page importance /.

Now let us apply the exact same algorithm, i.e. at page level, but let us focus
on the “cash” moving from a web site to another. Let the history at site level be
the sum of the history of its pages. So:

Hsite[Y] - Z H[p]

pinY

Now consider the “cash” distributed by site Y to asite Z. It isthe sum of the
“cash” distributed by the pages of Y to pagesof Z. That is.

2, 2 HlplxLp.d

pinY qgin Z
. Which can also be writtenas >, H[p] >~ 7 H[ ]} Lip,q], or H[Y] %
L'lY, Z]. Thus,
Z H[Y]« L'[Y, Z]
, by the definition of L.

As a consequence, the importance 1,;,. defined previoudly is a solution of the
on-line formalism applied to graph G'. Our formalism [5] is proved to be strictly
equivalent to PageRank. Moreover, the matrix convergence solution is unique
because GG’ is strongly connected. Thus, /. is exactly the PageRank over G'.
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