
Change-Centric Management of Versions
in an XML Warehouse

�

Amélie Marian Serge Abiteboul, Grégory Cobéna Laurent Mignet
Columbia University / N.Y. USA Verso INRIA, Rocquencourt France Verso INRIA - Vertigo CNAM, France

amelie@cs.columbia.edu � firstname � . � lastname � @inria.fr mignet@cnam.fr

Abstract:
We present a change-centric method to manage versions

in a Web WareHouse of XML data. The starting points
is a sequence of snapshots of XML documents we obtain
from the web. By running a diff algorithm, we compute the
changes between two consecutive versions. We then repre-
sent the sequence using a novel representation of changes
based on completed deltas and persistent identifiers. We
present the foundations of the logical representation and
some aspects of the physical storage policy.

The work presented here was developed in the context of
the Xyleme project of massive XML warehouse for XML
data from the Web. It has been implemented and tested. We
briefly discuss the implementation.

Keywords: XML, Delta, Version, Change Control,
Warehouse.

1 Introduction
Data publication on the web is constantly increasing. Users
are often not only interested in the current values of docu-
ments and query answers but also in changes. They want to
see changes as information that can be used to learn about
the evolution of the web. We present a change-centric rep-
resentation of changes in a Web Warehouse of XML data.
By change-centric, we mean that we focus on deltas, i.e.,
the changes themselves, as opposed to other approaches
that might focus on snapshots or object history. We in-
troduce a logical representation of changes based on com-
pleted deltas and an efficient storage policy for it. Finally,
we briefly discuss some aspects of the implementation.

XML is becoming the new standard for semistructured
data exchange over the Internet [22, 1]. This work is part
of the Xyleme project [24, 25] that is studying and build-
ing a dynamic World Wide XML warehouse, i.e., a data
warehouse capable of storing massive volume of XML data
found on the Web. In the present paper, we consider the is-
sue of version management support for the Xyleme system.

In such a system, the management of versions is essen-
tial for a number of reasons ranging from traditional sup-
port for temporal queries, to more specific ones such as
index maintenance or support for query subscriptions. Mo-
tivations are considered in Section 2.

The system acquires XML data from the Web and main-
tains it up-to-date [16]. Thus, for a particular document, a

sequence of snapshots [2] is obtained. Similarly, continu-
ous queries (queries that are evaluated regularly) produce
sequences of query answers, i.e., sequences of snapshots
of an XML document. The modifications that occurred be-
tween time �����	� and time �
� can be computed using a diff
algorithm. We developed our own diff algorithm adapted to
XML data and our specific requirements. The algorithm is
presented in [9]. The sequence of snapshots and the results
of diff between consecutive ones form the basis of our man-
agement of versions. Note that the system does not have a
real time vision of the data. The time we fetch a document
may differ from the time of the last update as posted in the
header of the document that itself may differ from the ac-
tual time of this update. Furthermore, we may typically
“miss” some updates. This has to be accepted in the cur-
rent Web context. In the paper, we ignore this issue; and
when we mention the time of a version, we mean the time
the system acquired this version.

The main issues that are addressed in the paper are the
choices of a logical representation and that of a storage pol-
icy for versions adapted to the control of changes. Our log-
ical representation is based on deltas in the style of [11].
Its two main components are:

1. Persistent identifiers. In our logical representation, all
XML nodes are assigned a persistent identifier, that
we call XID for Xyleme ID. A main role of the diff
algorithm is to assign these identifiers. The use of per-
sistent identifiers is essential to describe changes and
also query changes efficiently.

2. Completed deltas. Simple deltas are lossy and can-
not be inverted. For instance, updates typically ignore
the old value. We introduce completed deltas which
are deltas containing additional information that are
reminiscent of traditional ways of representing logs in
database systems. Completed deltas can be inverted
and composed.

Our physical storage policy is based on storing the cur-
rent version of the document, an XID-map to handle XIDs
and a single XML document containing all forward com-
pleted deltas. The XID-map is a novel concept that allows
to attach persistent XIDs to every node in a storage-efficient
manner. A forward completed delta describes the changes
between two consecutive versions going from the old one

to the new one, and also contains information for the op-
posite direction. The choice of this storage policy was mo-
tivated by an analysis of the Xyleme change-management
requirements which we discuss in the paper. In particular,
this storage policy presents the advantage that it is possible
to install a new version with almost no update to objects
already in the store. A disadvantage is that we store re-
dundant information. We present a delta compression tech-
nique to periodically recover space. Others works on XML
versionning have been proposed by [7, 8].

As previously mentioned, the present work has been re-
alized in the context of the Xyleme project. The versioning
system is implemented (like the rest of the system) in C++,
under Linux, with Corba for communications. We present
some experimentation.

We consider motivations in Section 2. In Section 3, we
present the logical representation based on XIDs and (com-
pleted) deltas. We discuss our storage policy in Section 4.
The last section is a conclusion. Due to space limitations,
proofs and details of algorithms are omitted.

2 Motivations
In this section, we discuss motivations for using deltas in
the context of Xyleme. Most of these motivations clearly
apply to a much larger setting. We also consider specific
requirements of the system that guided the choices of the
logical and physical representations. Further motivations
for these choices are given in the following sections.

Deltas serve many purposes in such an XML warehouse
environment:
Versions. We may want to version a particular document,
(part of) a Web site, or the results of a continuous query.
This is the most standard use of versions, namely recording
history.
Querying the past. One might want to ask a query about
the past, e.g., ask for the value of some particular element
at some previous time. Also, one might want to query
changes, e.g., ask for the list of all items recently intro-
duced in a catalog.
Learning about changes. A user may request some XML
documents or some XML query result, say � � at time � .
Later, the user may request a new version, say ������� . The
delta from time � to �
	�� is a possible description of the
changes. It allows to update the old version � � and also to
explain the changes to the user. This is in the spirit, for
instance, of the Information and Content Exchange, ICE
[23, 12, 14].
Monitoring changes. We implemented a subscription sys-
tem [17]. We want to be able to detect changes of interest in
XML documents, e.g., that a new product has been added
to a particular catalogue. To do that, at the time we obtain a
new version of some data, we compute the delta and verify
if some of the changes that have been detected are relevant
to some subscriptions. Related works on subscription sys-
tems that use filtering tools for information dissemination
have been presented, e.g., in [26, 4].
Indexing In Xyleme, we maintain a full-text index over a
large volume of XML documents. To support queries using

the structure of data, we need to store structural informa-
tion for every indexed word of the document [3]. We are
considering the possibility to use the delta to maintain such
indexes.

These are motivations for deltas in the context of
Xyleme. Obviously, they apply to a much wider context.
There are other possible uses of deltas. To see one, con-
sider resource sharing. Different users may be simultane-
ously updating (off-line) the same XML document. Deltas
turn out to be useful to synchronize the respective versions.
They describe the modifications and facilitate the detection
of potential conflicts. This is in the style of, e.g., CVS [10].

In our context, the starting point is a sequence of snap-
shots of an XML document that is obtained from the Web
(or computed in the case of continuous queries). Each new
version is processed with the previous one with our diff al-
gorithm to match nodes in the two versions, i.e., “identify”
them. This also allows us to compute the delta between the
two versions. For each versioned documents, we store the
last version and the sequence of completed deltas. For each
� , the completed delta
 ��� ��� � describes how to go from one
version � � to the next one � ��� � , and from � ��� � to � � . The
reasons for using completed deltas and not ”simple” deltas
will be explained at length. In short, this is because the
computation of some operations such as the composition
of deltas and the inversion of deltas is simply not possible
with simple deltas without costly reconstructions of ver-
sions.

Thus, at each point in time, we store the last version, and
the sequence of completed deltas from the origin. There
are many possible alternatives for storing the history of the
data. The choice of a logical representation of change and
of a physical one clearly depends on the pattern of use of
the system. In our choice, we assumed the general require-
ments of Xyleme. In Xyleme, it is considered critical to be
able to obtain the changes between the data at time � � and its
current value, and query these changes. Other aspects such
as rebuilding the document as it was at some time � � should
be supported although they are not considered as critical in
terms of performance. The most critical requirement is that
we want to be able to install a new version very efficiently.
More precisely, we want to be able to install new versions
roughly at the speed we can obtain and index data. We will
see how this impacts on the choices we made.

3 The Model
We introduce a simplified model for XML documents that
is sufficient to discuss changes. We then consider three
models of changes. First, we consider edit-scripts that are
sequences of basic operations. Then we introduce deltas
that are sets of basic operations and present the advantage
of being a more global description of changes. Finally, we
propose the notion of completed deltas that overcomes cer-
tain shortcomings of deltas. Completed deltas are in some
sense connected to logs considered in database systems.
We show nice mathematical and practical aspects of com-
pleted deltas.

The starting point of our work is a sequence � ����������� � �

of snapshots, i.e., the versions of some XML data at time
� � � ��� ��� � � . A problem with respect to change is that there is
no means to detect that two nodes in consecutive snapshots
correspond to the same entity. To represent changes in a
natural manner, we need to be able to track XML nodes
through time. For this, we use persistent identifiers that we
call Xyleme identifiers, XIDs. There are many motivations
for XIDs. For instance:� Suppose the price of a product has been modified

to a new value � . This change may be easily de-
scribed by �����	� ��

� � � ��� where � is the XID of the
text node corresponding to this product price (e.g.,
�����	� ��

��� ������� �).� Suppose we want to reconstruct the history of a prod-
uct or its description at a certain date. If we have
an identifier for the product, it is easy to obtain such
an information using an appropriate indexing mecha-
nism.

Since nodes in documents found on the Web in general do
not have identifiers, we have to provide these identifiers.
To do that, we designed and implemented a diff algorithm
that is described in [9]. Thus we assume that the nodes in
the various versions come equipped with XIDs. See Figure
1 where only some matchings are shown. XIDs considered
here form a logical concept that can be used to denote an
XML node in a persistent manner. We will discuss particu-
lar implementations of XIDs further.

The basis for our representation of changes are trees
where all nodes have identifiers. For our presentation, we
use a simplified model that is sufficient to describe the main
aspects of changes. In the implementation, we of course
deal with the complete XML model. Formally, we will as-
sume that XIDs are from the set � of integers. Values are
from a set � , e.g. the set of strings. The simplified model
is as follows:

Definition: An XML tree is a pair ��� ����� where (i) � is a
finite ordered tree with nodes from � ; and (ii) � , the value
mapping, assigns a value (possibly null) in � to each node
in � .

In the complete model, we need to distinguish be-
tween text, element and attribute nodes because they be-
have slightly differently for some of the change operations
we study. The value of an element node is its label, whereas
for a text node, it is a PCDATA. Note that, for instance, a
text node cannot have children and has a fixed label. We
will mention some differences further on.
Edit-scripts
One can modify an XML-tree � using the following basic
operations:

1. delete(m) that deletes the XML tree rooted in node
where is not the root of � .

2. insert(n,k,T’) that inserts the XML tree �"! as the # -th
child of � .

3. move(n,k,m) that moves the XML tree rooted in node
 to be the # -th child of � .

4. update(m,v) that changes the value of a node to � .

The resulting tree (with identifiers) is defined in the obvious
way. There are clearly consistency conditions. E.g., for the
insertion, � must have a node � with at least #%$ � children
and � � � ! should not have XIDs in common. If an operation& is consistent for a tree � , & �'�"� is defined in the obvious
manner. An edit-script is a sequence of such operations.
The script & �)(������*(& � is consistent for a tree � is for each � ,& ��� �)(������*(& � is consistent for & �+(������,(& � �'�"� where the result
of applying a script to a tree is defined in an obvious way.

Remark 3.1 This model of changes is rather simplistic.
Our implementation does consider a larger set of basic op-
erations to handle the general XML model, e.g., attribute
operations and label updates. One could also consider more
sophisticated update operations, e.g., the means to insert a
string in position # of an existing string, or to increment
an integer. Although these would be interesting to con-
sider from a practical viewpoint, they would not change
the framework in any substantial manner, so they will be
ignored here. -

Consider a tree � of root 0, with children 1,2,3 with
values “a”, “b”, “c” and the following edit-scripts:
� update(3,“d”);move(0,2,3);delete(1);update(3,“e”)� delete(1);move(0,1,3);update(3,“e”)

These two scripts have the same effect on � . After ap-
plying each of them, node 3 becomes the first child of 0
and its value is “
 ”. The second one is more “interesting”
in that it provides the final value and position of node 3.
Delta
As we saw, there may be many ways to describe the
changes between two consecutive versions using edit
scripts even when nodes have identifiers. An alternative
is to use deltas. A delta consists of a set of basic opera-
tions : delete (D), update (U), insert (I) and move(M). The
focus is on avoiding to specify an order of execution as in
an edit-script. For example, deltas operations use positions
that refer to one of the two document’s snapshot (e.g. �	�
for delete, ��. for insert). Given two snapshots of a docu-
ment with identified nodes, there is a unique delta describ-
ing operations that transform one snapshots into the other.
Given two trees � � �/! , a delta
 from � to �/! is a set of
operations satisfying the following properties:
deletes for every node � that is in � and not in � ! and
whose parent is in �/! , then 01� �2� is in
 .
 contains no
other deletes.
inserts for every node � that is in �"! and not in � and
whose parent is in � , then 3��4 � # � � ��� is in
 where is
the parent of � , # the rank (position in the parent) of � , and
� � is the tree rooted at � with all nodes from � pruned.

contains no other inserts.
updates for every node � whose value � in �"! is not that of
� in � , then 56� � � �7� is in
 .
 contains no other updates.
moves
 also contains 8 	+ 9
 moves :;� � � # � 1� where
is in � ! the # -th child of � and occurs in � with a differ-
ent parent or position.
absent nodes for each node � belonging to both � and
� ! , the set of children of � that were neither deleted, nor

Pr Pr

PN N P

Pr Pr

P

Pr

N P N N P

Pr

N P

Pr Pr

PN N P

Pr

N P

catalog

Version 0 Version 1 Version 2

catalogcatalog

TV 200 Nikon 500 TV 100 VCR 150 DVD 500 TV Nikon 500 VCR 1001

2

3

4

VCR100

5

6

7

8

9

10

11

2

31

4

5

6

7

8

9

10

11

13

14

15

17

18

19

20

2116

1

2 4

5

6

7

8

9

10

11

13

14

16

12

15

Camera 12
503 Camera

Figure 1: A sequence of snapshots with identified nodes

��� � � (Forward Delta)
� ��� � (Backward Delta) � � � � (Completed Delta)

delete (21) insert (11, 4, B) �	
��'
 ��
 (11, 4, B)
move (11, 2, 16) move (11, 1, 16) 	+��
 (11, 2, 16, 11, 1)
update (3, 50) update (3, 100) �	���
� ��
 (3, 50, 100)
update(8, 100) update (8, 150) �	���
� ��
 (8, 100, 150)

Table 1: Examples of deltas

inserted, nor moved, are the same in � and � ! and they are
in the same order.

In a delta, if a node is a third argument of a move, it
is called a m-node. The first argument of a delete, (resp.
update), is called d-node, (resp. u-node). The root of an
inserted tree is called an i-node. Note that a node is at most
one between d-node, i-node, and m-node.

Operations in a delta
 represent the set of changes
needed to go from some instance � to some � ! . Opera-
tions in a delta are not ordered in the sense that deltas do
not provide any explicit order.

On the other hand, applying the delta on the snapshot of
the document requires to execute operations one-by-one,
and thus to order them. For example, parents node are in-
serted before children. For insert operations with the same
parent, our solution, simple and efficient, consist in starting
with the lower positions. Thus, when the insert operation
is executed, the actual insert position is equal to the posi-
tion of the node in the final snapshot, as described in the
operation’s parameters. This order is reversed for delete
operations.
Theorem 3.2 Let � be a tree and
 a set of operations,
then there exist at most one �/! such that
 is a delta from
� to � ! .

Given � �
 ,
 �4�"� is the tree (if it exists) such that

is a delta from � to this tree; otherwise
 �'�"� is undefined.
Note also that it is relatively easy given � and
 to compute

 �'�"� .

Let
 ���
6. be two deltas from � to �/! . By definition,
they have the same inserts, deletes and updates operations.
They may differ in the moves only. A
 from � to � ! is

said to be minimum if there is no strict subset of
 that is
also a delta from � to �/! . Clearly, a delta can be “mini-
mized” by removing redundant moves. We next consider
an interesting observations on the absent nodes. For each
tree � and node � in � , we call ��� �	�'��
)
 � �'� � �2� the word
consisting of the list of XIDs of the children of � . Then we
have:

Proposition 3.3 Let
 be a minimum delta from � to � !
and � a node in � . Then the absent children of � , i.e.,
the children that are neither d-nodes, i-nodes or m-nodes,
is a largest common subsequence for ��� ��� �

)
 � �4� � �2� and
��� ��� �

+
 � �4� ! � �2� .

Thus given � and �/! , the choice of a
 from � to �"!
is specified by the choice of such a largest common subse-
quence for each node common to � and � ! .

Deltas present severe shortcomings from an information
viewpoint. A shortcoming for deltas is that it is not possi-
ble from a delta to construct an edit-script (without using
the original instance). Also, given
 � that applies to some
� and
 . that applies to
 �+�4�"� , one cannot compute from

 � and
 . , a delta that would correspond to their com-
position without using � . Similarly, deltas cannot be in-
verted, i.e., given a
 that transforms some � into � ! , one
cannot compute
6! that would transform �/! into � with-
out using � . These are, we believe, fundamental reasons
why database logs often record more information than just
deltas.

This leads to introduce completed deltas that will be at
the core of our representation of sequences of versions of a
document.

The Group of Completed Deltas
To be able to compose deltas (without using the instance)
and invert them, we introduce “completed” deltas. In com-
pleted deltas, we keep, for instance, the deleted tree in case
of a deletion. In some sense, a completed delta
 contains
how to transform a tree � into some tree �"! and how to go
back from � ! to � . The operations in completed deltas are
as follows:

1. �����������	� � � # � � � � that deletes the XML tree � � whose
root is the # -th child of node � .

2. �
	����
���	� � � � � 	+�7� where 	+� is the old value.

3. ����������� � � � # � � � � that inserts the XML tree � � as a # -
the child of node � .

4. ���
�
� (n,k,m,p,q) that moves the XML tree rooted in
node �� -th child of � to be the # -th child of � .

Definition: A set
 of these operations is a completed
delta if there exist � � �/! such that
 is the set of operations
that transforms � to �/! .

Completed deltas (together with edit-scripts of com-
pleted basic operations) form a sound basis for capturing
changes in trees.
Completed delta operator Let
 be a completed delta
from � to �/! . We can can easily compute a simple for-
ward delta by ignoring some information. Let us denote it
by
�� . By definition, we will let
 �4�"���
��+�4�"� for each
� .
Composition Composition can be defined on completed
deltas. One can easily obtain the lists of inserted, deleted,
moved and updated nodes. The values of the updates and
the parent of inserted/deleted nodes are also easy to main-
tain. The main difficulty is to update the positions of in-
sert(delete) operations in the first(second) delta to link to
positions in the last(first) snapshot of the document. For
this, we do for each node some book-keeping within the
children’s position.

Inverse Given a completed delta
 , let us call

�	�

the completed delta obtained by exchanging inserts and
deletes, the old/new values for updates and permuting ar-
guments of moves. Observe that for each � :

�	� �
 �4�"� ��� � �

Identity Finally, let
! "�$# (the empty set of com-
pleted operations). Then for each
 , we have %
 (
� �&'�
%
((
(&)�
 .

We are now ready to state:
Theorem 3.4 Completed deltas with the composition op-
eration form a group.

Consider a start instance � and a sequence of com-
pleted deltas
 � � ��� � such that, for each � ,
 � � ��� � is con-
sistent with � � �
 � � . (�����*(
 ���	� � � � � � . Then we have:

�+*,�
 � � ��� � (������,(
-* �	� � *	� � � � �/.10
�+*,�

� �
� � � � � (�����,(

� �
*�� * � � � � ��� �/210

�+*,�

� �
� �	� � � (�����,(

� �
*�� * � � � � ��� for each 0 �

<!-- sequence of changes -->
<completed-delta sequence>
<!--change between 2 versions -->

<completed-delta t="2001/02/12/12:018">
<update n="234" ov="Versions"

v="Change-Based Versions"/>
<!-- inserted tree cannot -->
<!-- be an attribute-->

<insert n="5" k="3">
<T><ack status="no show">
Work supported by R.N.R.T.</ack></T>

</insert>
</completed-delta>
<completed-delta t="2001/02/13/14:15:18">
<update n="234"

ov="Change-Based Versions"
vn="Change-Centric Versions"/>

<move n="4" k="4" m="345" p="5" q="3"/>
<!-- attribute update -->

<update-att n="445" l="status"
v="show" ov="no show"/>

</completed-delta>
</completed-delta sequence>

Figure 2: A Sequence of Completed Deltas in XML

Thus from � � and the sequence of completed deltas, we can
reconstruct all possible versions of the document. This is
in a nutshell the proof of correctness of our storage policy
since we are storing � � and
 � � ��� � for each � .

Remark 3.5 We mentioned that it is not possible to trans-
form edit-scripts into deltas and conversely (without access
to the original instance). This can be achieved for com-
pleted deltas. Let
 be a completed delta. To transform it
into a script over completed operations, we specify an or-
dering of the inserts and one of the deletes. It turns out to
be useful to “split” a move into an insert and a delete oper-
ation. One can thus obtain an equivalent script that uses in-
serts and deletes only. We can then use rewrite rules based
on algebraic properties of updates to rewrite the sequence
into an equivalent sequence that will bring together inserts
and deletes corresponding to the same move operation. For
instance, such a rewrite rule is:

3��4 � � � �"� (3��4 � # � � !*��3
3 �' � # $ ��� � ! � (3 �' � � � �"� if #42 �

Finally, an insert and a delete corresponding to a move that
are consecutive in the edit script can be replaced by a move
operation. -

4 Versioning XML Documents
In this section, we first present our choice of a storage
strategy. We describe various alternatives and motivate the
strategy we chose. We then discuss the management of
XIDs, the identifiers of nodes. Finally, we discuss in more
details some implementation aspects of the storage.

4.1 Physical organization
As already mentioned, we store the last version (the cur-
rent one) in the repository as well as an XML document

containing the sequence of forward completed deltas, i.e.,
(
 � � ��� �). See Figure 2. We also store the XID-map of the
current version that provides the means to obtain the XIDs
of the current nodes. This suffices to reconstruct the se-
quence of snapshots. Since we use completed deltas (
),
no information is lost.

We use a native XML repository that stores XML
data as tree [13]. We also represent changes as XML
trees which facilitates querying them and sending them to
clients. Changes described in XML may seem quite ver-
bose storage-wise (see Figure 2). However, a lot of the
redundancy is introduced by the tags, such as insert, delete
etc. The repository we use represents such tags as inte-
gers, so they are not repeated in the store. Moreover, the
crux of our technique is that to check in a new version
mainly consists of adding new data to the store (� ����� and

 ����� � � � ��� �). This is typically faster (in the repository we
use as well as in many repositories) than updating data in
place. This is an important aspect of the choice of a storage
policy. We next compare it to 3 alternative representations.
Others physical representations are described in [8, 19].
Storing 1st + last versions + forward deltas. The com-
putation of
 � � ��� � is slightly better with this storage than
with completed deltas because simple deltas use less space.
So, typically, fewer disk pages will have to be loaded to
compute
 � � ��� � . The main issue is that we are storing two
versions of each document. Another drawback is that get-
ting a recent version � � may be very costly since we have
to start from � .
Storing last version + backwards deltas. The computa-
tion of � � for some recent � is rather efficient. This solu-
tion [20] saves some space compared to the previous one
since only one complete version is stored. It is also less
space consuming that the method we chose since simple
deltas are typically smaller than completed ones. The main
drawback is for the computation of
 � � ��� � . Since simple
deltas cannot be inverted (see above), the information miss-
ing from the delta may have to be found in � � � � , which
requires loading and processing � � � � to obtain
 ��� � � � .
Storing a history. We could imagine storing a history in
the style of DOEM [6]. This is more in the spirit of typ-
ical storage of versioned object databases [5]. In such a
representation, an object contains the entire history of an
XML node. This is clearly a better approach for temporal
queries. However, for each new version, we have to modify
in the store all the objects that were modified since the last
one. This update in place is typically very costly in terms
of processing.

As mentioned before, we decided to store the last ver-
sion and the sequence of forward completed deltas. We
believe it is a good compromise. The most recent version
is available. Forward deltas (by pruning of the completed
deltas) and backward deltas (by inversion and pruning) are
available. We do not have to perform updates to the store,
only appends. From a storage viewpoint, it is certainly not
the best since completed deltas are more space consuming
than, e.g., simple backward deltas. We will see how com-

pression allows us to reduce redundant storage to a reason-
able level.

4.2 Management of XIDs
In this section, we consider a critical issue in our method,
namely the management of Xyleme IDs, XIDs. XIDs
are persistent identifiers given to all nodes of a document.
Xyleme also uses node identification for full-text index-
ing. However, the requirements for full-text indexing dif-
fer from that of versioning. Thus, XIDs are only used
for change management and in particular by the version-
ing module.

An XID-map provides a mapping between the nodes of
a tree and some integers that identify these nodes. The
XID-map also specifies what is the next available integer
to avoid reassigning the ID of a node that has been deleted
to a new node. An example of XID-map and the tree it
applies to are shown in Figure 3. The XID-map is based
on the listing of XIDs of the nodes in postorder traversal
of the tree. In the listing, we use ranges which often pro-
duces important space savings. In the example, the next
available XID is

���
. The XID-map specifies that we should

traverse the tree in postorder and assign integers from (1-
3,7-13,5,14-28) while doing so, i.e., 1, 2, 3, 7, 8, etc. This
particular mapping could have been obtained, for instance,
from a tree with XID-map (1-28) � 29 if nodes � and � were
deleted and node � was moved. The XID-map assigns a
unique (persistent) integer to each node. We argue that it
does it in a compact (storage-wise) manner.

1 2

3

7

8 9

10 11

12

13 5

14

15

16 17

18

19

20

21 22 23

24

25

26

27

28

Figure 3: Tree with XID-map (1-3,7-13,5,14-28) � 29

The method for creating and managing XID-maps is de-
scribed next:
Initialization. At initialization, the XID-map is
� $ �����	� � where � is the number of nodes in the tree. It
states that the tree should be visited in postorder assigning
integers from 1 to � and that �
� � is the next available
integer.
Evolution. Note that XIDs are persistent names. In par-
ticular, an original node will always keep this initial iden-
tification even if moved. For insertions, we assign new in-
tegers to the nodes in the inserted subtrees using again a
postorder traversal for the inserted subtrees.

The matching with the old version and the assignment

of XIDs to the new nodes provide XIDs for all nodes of
the new version. The XID-map for this new version is con-
structed by traversing the resulting tree in postorder and
recording the identifiers of nodes that are traversed.

To see an example, consider the XID-map � $ ��� � � ���	� .
Suppose a subtree is deleted. At this stage, the XIDs in
a subtree consist in consecutive integers, say � � � $ ��� � .
The XID-map is now � $ �
� ��������� $ ��� � � ���
� . Now,
suppose we insert a new subtree of 22 nodes just before
node � �
� in post-order traversal. The resulting XID-map is
now � $ � �
��� �+��� $ � � � � ���	� $ � � � ��� � �/$ ��� � � � ��� .

Note that the XID-map of a tree provides identifiers to
every node of the tree. Observe also that the identification
is stored separately from the tree data itself. One might
consider storing the XIDs inside the XML document, e.g.,
add one extra attribute per element and store the XID in it.
The main drawback of this method is space. This would
add one attribute per node in the document and may in-
crease the size of the document in a not negligible way
(roughly 20% or more depending of the nature of the stor-
age and the specific document). Besides, it involves chang-
ing (internally) the document, which leads to extra work
when accessing the document or processing queries.

The XID-map allows to identify the nodes in each par-
ticular version in a unique manner. It provides identifica-
tion for all nodes. It is stored only for the current version
and is stored separately from the document. Portions of the
XID-map for deleted subtrees are also stored in the delta.
When a user requests the current version (and is interested
in changes and not only snapshots), the user is sent the cur-
rent version together with its XID-map. Future changes
will always refer to the XIDs based on the assignment spec-
ified by the XID-map.

Remark 4.1 Observe that for a document of � nodes, the
length of the list in the XID-map may grow in the worst
case to � � � integers, more precisely, to order of � log �
bits. However, observe that, in general, the list is much
smaller than � integers. Indeed, the size of this list may
grow linearly in the number of changes and become as large
as the number of nodes in the document. In practice, it does
not because some operations may reduce the length of the
XID-map and others such as insertions of large subtrees
will tend to reduce the ratio between the size of the XID-
map and the number of nodes in the document. Thus, one
may expect, in general, the XID-map to be much smaller
than � log � . -

For XIDs, attributes play a special role. Observe that
XML does not allow a node � to have two attributes with
the same name, say � . So, “attribute � of node � ” is a
complete identification. This is why we do not assign XIDs
to attributes but only to element and text nodes. Besides,
attributes are not ordered in XML, so it is not obvious to
extend the notion of XIDs that is essentially based on order
to attributes that are by definition unordered in XML.

To conclude this section, we mention techniques for
identifying nodes that we are considering but are not us-
ing yet.

Using DTDs. Some elements could be handled like at-
tributes. Suppose for instance that the DTD states that each
product has a single sub-element called description. Then
we could identity such a description node using the XID of
the product and its tag.
Semantic IDs. We assign Xyleme IDs to all nodes inde-
pendently of the document content. In some cases, the
data itself may contain meaningful identifiers. Observe that
from a user viewpoint, such identifiers carry more mean-
ing that system-generated IDs. In particular, in the XML
world, IDs (together with IDREFs) are typically used to
denote elements and are therefore primary candidate for
serving as semantic IDs. It would be possible to use such
data as XIDs. However, note that the persistence of such
identifiers is not guaranteed by XML.
Using position. They are many ways to specify compactly
positions in a tree. For instance, Xyleme uses for indexing
purposes, a prefix/postfix/level coding that allows to iden-
tify a node with a triplet � � � 0 � #�� where � is its ranking in
pre-order traversal of the document, 0 that in postorder and
its level. The drawback of all these techniques is that such
identifications are not persistent. When the structure of the
tree changes, so does the identifier of the node. We are cur-
rently working on an identification mechanism that would
combine persistence as the XID scheme with positional in-
formation needed by query processing such as being able
to determine that a node is an ancestor of another one.
Selective XIDs. Lastly, one may consider identifying with
XIDs only certain kinds of elements, typically those that
are likely to change. E.g., in a catalog, new products are
going to be added and prices to be changed, but the identi-
fication of products and to some extent, their characteristics
is less likely to change.

4.3 Implementation aspects
We consider next some implementation aspects.

Each completed delta is stored as an XML document.
When the system decides to install a new version of some
data, the following steps occur:

1. The new version is obtained from the Web and the pre-
vious version is loaded from disk.

2. diff is run between the two versions and provides a
matching between nodes of the two versions.

3. XIDs are attached to the nodes in the old version us-
ing the XID-map of the old version. The nodes in the
new version that were matched to existing nodes ac-
quire the corresponding XIDs. Inserted nodes get new
XIDs. The XID map of the new version is constructed.

4. The completed delta is computed.

5. The new version and the new XID-map are stored.
The completed delta is appended to the delta. The old
version is deleted.

A main issue w.r.t. completed deltas is the storage of re-
dundant information. For example, if an element has been
detected as updated at versions � and 0 , the new value of its
update in
 � � � � � and the old value of its update in
 * � � � *
are the same. The repeated values may be large strings.

Similarly, a subtree inserted then deleted appears twice in
the completed deltas.

Our storage strategy therefore possibly introduces some
redundancy. It is possible to reduce that cost by keeping
track of the data that is already recorded and not redun-
dantly store it. This makes query processing much harder.
One could also use pointers to values already in the store
but that would make the installation of a new version quite
costly. We decided to use this very redundant storage pol-
icy with the possibility to apply periodically compression
steps.
Compression During compression, we first read the his-
tory to detect all “large” objects that are stored redundantly.
For data smaller that the size of the pointers, it is simply
more efficient to simply duplicate the data. Note that for
this detection, we can rely on the XIDs that provide per-
sistent identification for the objects. Then we use pointers
to physical locations in the store. We process the sequence
of deltas starting from the most recent one replacing re-
peated large objects by pointers to more recent locations in
the delta. These are rather standard issues that will not be
detailed here. With this compression step, one can show
that the storage is comparable to that obtained in a more
standard versioned database.

To conclude this section, we briefly mention some com-
plementary techniques. In the current implementation, we
did implement the first one, aggregation. The last two, in-
termediate versions and archiving, are not yet supported.
Aggregation Typically, the granularity one would like for
a document varies in time. E.g., one might want to have bi-
weekly versions for the last month, weekly for the previous
one, monthly for the previous year and yearly before. For
that, it may be necessary to aggregate consecutive deltas.
This will typically result in some space saving but at the
cost of loss of information.
Intermediate Versions It may be useful to store intermedi-
ate versions from time to time. Intermediate versions com-
plicates change queries and monitoring but speed up, for
instance, the recomputation of old states [21].
Archiving In our approach, archiving is straightforward. It
suffices to archive the sequence of deltas before a certain
date.

Some measures on the size of deltas are given next.

4.4 On the size of deltas
To evaluate the physical representation, we measured deltas
generated by a change simulator. The change simulator
produces, given an input XML document, modified ver-
sions of the document. The simulator can be controlled by
some parameters such as the probability of an insert, delete
or update [9].

Figure 4 gives the ratio between the delta documents and
the original documents for documents of 2 different sizes.
Each point was computed from 1000 test results. Not sur-
prisingly, the size grows linearly, reasonably in the ratio of
changes. For small documents, it reaches faster the size of
the document. Clearly, when the document is small, any
overhead costs a lot as a fraction of the document size.

Note that when the size of the delta is important com-
pared to that of the document itself, it may seem more ap-
propriate to simply keep the versions. However, the delta
is more informative since it also keeps change information
that would have to be recomputed if we store simply the
versions.

To continue with this analysis, consider Figure 5 that
illustrates the relative sizes of different informations for a
sequence of 10 changes. Sizes are given as a percentages
of the size of storing all the versions. The first graph gives
the values for a modification ratio of 15% (5% update, 5%
insert, 5% delete), the second one for a ratio of 30% (10%,
10%, 10%). For each document size, we consider (i) the
total size of the versions; (ii) the size of the sequence of
completed deltas; (iii) the size of the sequence of simple
deltas; (iv) the size of the aggregated delta (that ignores the
intermediate steps). For the completed delta, this is with-
out the compression phase. These measures give some in-
tuition of the storage overhead that is incurred if we want to
support some functionalities, and, in particular, of the cost
of keeping the completion.

We measure here the size of deltas as text files. The ac-
tual storage in our XML repository [13] would require a
little less space than the text size. This factor would not
have much impact on our measures. A limitation is that we
measure changes made by the simulator. It would be in-
teresting to experiment with real data gathered on the Web.
We are currently conducting such experiments. Finally, it
would be interesting to see the impact of the structure of
the document (e.g., deep vs bushy trees, regular vs. irregu-
lar trees) on the size of the delta. We plan further studies in
these directions.

5 Conclusion
All the ideas described here have been implemented and
tested. In particular, we implemented:

1. the management of deltas in a native XML repository
(Natix [13]). When a new version arrives we com-
pute the changes and modify the history by a simple
append.

2. the computation of the composition of completed
deltas. This serves many purposes. The main diffi-
culty is the computation of positions for the moves
and insertions.

3. the application of a delta to an instance, i.e., the com-
putation of
 � �6� given � and
 .

4. the projection of delta forward and backward. The
forward one is used after composition to be able, for
instance, to send a simple forward delta
�� � ����� to a
user. The backward is used after composition to com-
pute
 ����� � � . It allows then to reconstruct old versions.

5. A GUI that can be used to display changes to the user,
if requested. The GUI is described in a technical re-
port [18].

The diff algorithm, a core part of the system, is de-
scribed in [9] together with some performance measures.
The change simulator that we used is also described there

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

si
ze

 o
f D

el
ta

 /
si

ze
 o

f D
oc

um
en

t

Modification probability

insert
update
delete

(a) Modifications on a small document
(4K)

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

si
ze

 o
f D

el
ta

 /
si

ze
 o

f D
oc

um
en

t

Modification probability

insert
update
delete

(b) Modifications on a large document
(331K)

Figure 4: Ratio between the size of the XML delta and the size of the XML Document

������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

������

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

0

20

40

60

80

100

120

140

Si
ze

 o
f

D
el

ta
s

/ S
iz

e
of

 A
ll

Sn
ap

sh
ot

s

Size of document
0.5K 4K 45K 331K

All Snapshots
Completed Deltas

Simple Deltas
Aggregated Delta

(a) 15% Modification on the Document

��� �

!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!

"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"

#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#
#�#

$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$
$�$

%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%
%�%

&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&
&�&

'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'

(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(

)�)*�*

+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+

,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,

-�-�-
-�-�-
-�-�-
-�-�-
-�-�-
-�-�-
-�-�-
-�-�-
-�-�-

.�.�.
.�.�.
.�.�.
.�.�.
.�.�.
.�.�.
.�.�.
.�.�.
.�.�.

/�/
/�/
/�/
/�/
/�/
/�/
/�/
/�/

0�0
0�0
0�0
0�0
0�0
0�0
0�0
0�0

1�1
1�1
1�1
1�1
1�1

2�2
2�2
2�2
2�2
2�2

3�34�4

5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5

6�6
6�6
6�6
6�6
6�6
6�6
6�6
6�6
6�6
6�6

7�7
7�7
7�7
7�7
7�7
7�7
7�7
7�7

8�8
8�8
8�8
8�8
8�8
8�8
8�8
8�8

9�9
9�9
9�9
9�9
9�9
9�9
9�9

:�:
:�:
:�:
:�:
:�:
:�:
:�:

;�;
;�;
;�;
;�;
;�;

<�<
<�<
<�<
<�<
<�<

0

20

40

60

80

100

120

140

Si
ze

 o
f

D
el

ta
s

/ S
iz

e
of

 A
ll

Sn
ap

sh
ot

s

Size of document
0.5K 4K 45K 331K

All Snapshots
Completed Deltas

Simple Deltas
Aggregated Delta

(b) 30% Modification on the Document

Figure 5: Relative sizes of deltas on a sequence of 10 snapshots of a document

in more details. Many issues need to be further investi-
gated:

1. We plan to pursue the study of the foundations of
change composition (e.g., the group of completed
deltas) in more depth and in particular the study of
the rewrite system of update operations.

2. We believe that there is a lot of room for optimiza-
tion in the storage of delta, e.g., using the compres-
sion technique described here and following other di-
rections such as [15]. Also, a very interesting issue is
to develop learning tools that, based on the sequence
of versions of a document (or a site) and on the needs
of users, adopt the best storing strategy for it.

3. An interesting issue is that of the processing of tempo-
ral queries based on the change-centric representation
we proposed here.

4. It would be interesting to develop new strategies for
allocating identifiers to nodes in an XML tree. In par-
ticular, we are investigating a identification strategy
that would provide persistent identifiers and would
also give indications on the structure of the data.

Acknowledgments We would like to thank many people
who participated in Xyleme meetings where we discussed
the ideas that led to the present paper and, in particular, B.
Amann, S. Cluet, G. Ferran, G. Jomier, J. Jouglet, C.-C.
Kanne, D. Le Niniven, F. Llirbat, T. Milo, G. Moerkotte,
B. Nguyen, M. Preda, L.Segoufin and V. Vianu.

References
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web:

From Relations to Semistructured Data and XML. Morgan
Kaufmann Publisher, 2000.

[2] M.E. Adiba and B.G Lindsay. Database snapshots. In
VLDB, 1980.

[3] V. Aguiléra, S. Cluet, P. Veltri, D. Vodislav, and Fanny Wat-
tez. Querying XML Documents in Xyleme. In Proceedings
of the ACM-SIGIR Workshop on XML and Information Re-
trieval, 2000.

[4] M. Altinel and M. J. Franklin. Efficient filtering of XML
documents for selective dissemination of information. In
VLDB, pages 53–64, 2000.

[5] W. Cellary and G. Jomier. Consistency of versions in object-
oriented databases. In VLDB, 1990.

[6] S. S. Chawathe, S. Abiteboul, and J. Widom. Managing his-
torical semistructured data. Theory and Practice of Object
Systems, 5(3):143–162, 1999.

[7] Shu-Yao Chien, Vassilis J. Tsotras, and Carlo Zaniolo.
A comparative study of version management schemes for
XML documents. Technical Report TR-51, TimeCenter,
2000.

[8] Shu-Yao Chien, Vassilis J. Tsotras, and Carlo Zaniolo. Ef-
ficient management of Multiversion Documents by Object
Referencing. In Proceedings of 27th International Confer-
ence on Very Large Data Bases, 2001.

[9] G. Cobena, S. Abiteboul, and A. Marian. Detecting Changes
in XML Documents. Technical report, INRIA - Columbia
University, 2001.

[10] Concurrent versions system.
http://www.cvshome.org/.

[11] M. Doherty, R. Hull, and M. Rupawalla. Structures for ma-
nipulating proposed updates in object-oriented databases. In
SIGMOD, 1996.

[12] Oasis, ICE resources,
http://www.oasis-open.org/cover/ice.html.

[13] C.-C. Kanne and G. Moerkotte. Efficient storage of XML
data. Technical Report 8/99, University of Mannheim, 1999.

[14] Kinecta, http://www.kinecta.com/products.html.

[15] H. Liefke and D.Suciu. XMill : an Efficient Compressor for
XML Data. In SIGMOD, 2000.

[16] L. Mignet, Mihai Preda, S. Abiteboul, S. Ailleret,
B. Amann, and A. Marian. Acquiring XML pages for a
WebHouse. In proceedings of Base de Données Avancées
conference, 2000.

[17] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Moni-
toring xml data on the web. In SIGMOD, 2001.

[18] D. Le Niniven. Rapport de stage DESS : Interface homme-
machine pour le suivi des evolutions de repository XML,
2000. Université Paris Sud.

[19] Michael Stonebraker. The design of the postgres storage
system. In Proceedings of 13th International Conference on
Very Large Data Bases, pages 289–300, 1987.

[20] Walter F. Tichy. Rcs- a system for version control.
15(7):637–654, 1985.

[21] Kristian Torp, Leo Mark, and Christian S. Jensen. Efficient
differential timeslice computation. TKDE, 10(4):599–611,
1998.

[22] W3C. EXtensible Markup Language (xml) 1.0.
http://www.w3.org/TR/REC-xml.

[23] N. Webber, C. O’Connell, B. Hunt, R. Levine, L.Popkin,
and G. Larose. The Information and Content Exchange
(ICE) Protocol. http://www.w3.org/TR/NOTE-ice.

[24] Xyleme Project. www-rocq.inria.fr/verso.

[25] Xyleme. www.xyleme.com.

[26] T. W. Yan and Garcia-Molina H. The SIFT Information Dis-
semination System. In TODS 24(4): 529-565, 1999.

